Have a personal or library account? Click to login
Solid fuel briquette from biomass: Recent trends Cover

References

  1. [1]. M. Esen, T. Yuksel, Experimental evaluation of using various renewable energy sources for heating a greenhouse, Energy and Buildings 65 (2013) 340–351. Doi: 10.1016/j.enbuild.2013.06.018
  2. [2]. S. Yılmaz, H. Selim, A review on the methods for biomass to energy conversion systems design, Renewable and Sustainable Energy Reviews 25 (2013) 420–430. Doi: 10.1016/j.rser.2013.05.015
  3. [3]. L. Nunes, J. Matias, J. Catalão, Mixed biomass pellets for thermal energy production: A review of combustion models, Applied Energy 127 (2014) 135–140. Doi: 10.1016/j.apenergy.2014.04.042
  4. [4]. N. Delchev, P. Malinova, M. Mihaylov, N. Dishovsky, Effect of the modified solid product from waste tyres pyrolysis on the properties of styrene-butadiene rubber-based composites, Journal of Chemical Technology and Metallurgy 49 (2014) 525–534.
  5. [5]. N.B. Khorasgani, A.B. Sengul, E. Asmatulu, Briquetting grass and tree leaf biomass for sustainable production of future fuels, Biomass Conversion and Biorefinery 10 (2020) 915–924. Doi: 10.1007/s13399-019-00465-7
  6. [6]. C.S. Chou, S.H. Lin, C.C. Peng, W.C. Lu, The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the Taguchi method, Fuel Processing Technology 90 (2009) 1041–1046. Doi: 10.1016/J.FUPROC.2009.04.007
  7. [7]. S. Rezania, M.F. Md Din, S.F. Kamaruddin, S.M. Taib, L. Singh et al., Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production, Energy 111 (2016) 768–773. Doi: 10.1016/j.energy.2016.06.026
  8. [8]. M. Thabuot, T. Pagketanang, K. Panyacharoen, P. Mongkut, P. Wongwicha, Effect of applied pressure and binder proportion on the fuel properties of holey bio-briquettes, Energy Procedia 79 (2015) 890–895. Doi: 10.1016/j.egypro.2015.11.583
  9. [9]. S. Teixeira, A. Pena, A. Miguel, Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel, Waste Management 30 (2010) 804–807. Doi: 10.1016/j.wasman.2010.01.01820133118
  10. [10]. I. Onukak, I. Mohammed-Dabo, A. Ameh, S. Okoduwa, O. Fasanya, Production and characterization of biomass briquettes from tannery solid waste, Recycling 2 (2017) 17.10.3390/recycling2040017
  11. [11]. J.S. Tumuluru, L.G. Tabil, Y. Song, K.L. Iroba, V. Meda, Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes, BioEnergy Research 8 (2014) 388–401. Doi: 10.1007/s12155-014-9527-4
  12. [12]. P.D. Grover, S.K. Mishra, Biomass briquetting: Technology and practices, Regional wood energy development programme in Asia 46 (1996) 1–43.
  13. [13]. N. Kaliyan, R. Vance-Morey, Factors affecting strength and durability of densified biomass products, Biomass and Bioenergy 33 (2009) 337– 359. Doi: 10.1016/j.biombioe.2008.08.005
  14. [14]. Y. Li, High-pressure densification of wood residues to form an upgraded fuel, Biomass and Bioenergy 19 (2000) 177–186. Doi: 10.1016/S0961-9534(00)00026-X
  15. [15]. A. Demirbaş, Physical properties of briquettes from waste paper and wheat straw mixtures, Energy Conversion and Management 40 (1999) 437–445. Doi: 10.1016/S0196-8904(98)00111-3
  16. [16]. O.O. Fasina, Physical properties of peanut hull pellets, Bioresource Technology 99 (2008) 1259– 1266. Doi: 10.1016/j.biortech.2007.02.04117475480
  17. [17]. C. Whittaker, I. Shield, Factors affecting wood, energy grass and straw pellet durability – A review, Renewable and Sustainable Energy Reviews 71 (2017) 1–11. Doi: 10.1016/j.rser.2016.12.119
  18. [18]. Z. Husain, Z. Zainac, Z. Abdullah, Briquetting of palm fibre and shell from the processing of palm nuts to palm oil, Biomass and Bioenergy 22 (2002) 505–509. Doi: 10.1016/S0961-9534(02)00022-3.
  19. [19]. S. Mani, L.G. Tabil, S. Sokhansanj, Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses, Biomass and Bionenergy 30 (2006) 648–654. Doi: 10.1016/j.biombioe.2005.01.004.
  20. [20]. A. Lisowski, J. Klonowski, M. Sypu, Comminution properties of biomass in forage harvester and beater mill and its particle size characterization, Agronomy Research 8 (2010) 459–464.
  21. [21]. H. Muraina, J. Odusote, A. Adeleke, Physical properties of biomass fuel briquette from oil palm residues, Journal of Applied Sciences and Environmental Management 21 (2017) 777.10.4314/jasem.v21i4.19
  22. [22]. C.Y. Sing, M.S. Aris, A study of biomass fuel briquettes from oil palm mill residues, Asian Journal of Scientific Research 6 (2013) 537–545. Doi: 10.3923/ajsr.2013.537.545
  23. [23]. S. Araújo, M. Almeida, V. Boas, D. Miranda, Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures, Biomass and Bioenergy 99 (2016) 181–186. Doi: 10.1016/j.biombioe.2016.04.007
  24. [24]. A. Yank, M. Ngadi, R. Kok, Physical properties of rice husk and bran briquettes under low pressure densification for rural applications, Biomass and Bioenergy 84 (2016) 22–30. Doi: 10.1016/j.biombioe.2015.09.015
  25. [25]. R.I. Muazu, J.A. Stegemann, Effects of operating variables on durability of fuel briquettes from rice husks and corn cobs, Fuel Processing Technology 133 (2015) 137–145. Doi: 10.1016/j.fuproc.2015.01.022
  26. [26]. S.A. Ndindeng, J.E.G. Mbassi, W.F. Mbacham, J. Manful, S. Graham-Acquaah, J. Moreira, J. Dossou, K. Futakuchi, Quality optimization in briquettes made from rice milling by-products, Energy for Sustainable Development 29 (2015) 24–31. Doi: 10.1016/j.esd.2015.09.003
  27. [27]. I. Chiou, I. Wu, Evaluating the manufacturability and combustion behaviors of sludge-derived fuel briquettes, Waste Management 34 (2014) 1847– 1852. Doi: 10.1016/j.wasman.2014.05.01324913348
  28. [28]. X. Zhang, D. Xu, Z. Xu, Q. Cheng, The effect of different treatment conditions on biomass binder preparation for lignite briquette, Fuel Processing Technology 73 (2001) 185–196. Doi: 10.1016/S0378-3820(01)00179-5
  29. [29]. Y. Zhao, Y. Zhang, H. Zhang, Q. Wang, Y. Guo, Structural characterization of carbonized briquette obtained from anthracite powder, Journal of Analytical and Applied Pyrolysis 112 (2015) 290– 297. Doi: 10.1016/j.jaap.2015.01.009
  30. [30]. A. Benk, Utilisation of the binders prepared from coal tar pitch and phenolic resins for the production metallurgical quality briquettes from coke breeze and the study of their high temperature carbonization behaviour, Fuel Processing Technology 91 (2010) 1152–1161. Doi: 10.1016/j.fuproc.2010.03.030
  31. [31]. N.V. Avelar, A.A.P. Rezende, A.D.C.O. Carneiro, C.M. Silva, Evaluation of briquettes made from textile industry solid waste, Renewable Energy 91 (2016) 417–424. Doi: 10.1016/j.renene.2016.01.075
  32. [32]. A.C. Deiana, M. Gimenez, M.F. Sardella, K. Sapag, A.L.S. Masseo, A.P.C. Teixeira, M.H. Araujo, R.M. Lago, Catalytic oxidation of aqueous sulfide promoted by oxygen functionalities on the surface of activated carbon briquettes produced from viticulture wastes, Journal of the Brazilian Chemical Society 25 (2014) 2392–2398. Doi: 10.5935/0103-5053.20140265
  33. [33]. S. Suhartini, N. Hidayat, S. Wijaya, Physical properties characterization of fuel briquette made from spent bleaching earth, Biomass and Bioenergy 35 (2011) 4209–4214. Doi: 10.1016/j.biombioe.2011.07.002
  34. [34]. J. Prasityousil, A. Muenjina, Properties of solid fuel briquettes produced from rejected material of municipal waste composting, Procedia Environmental Sciences 17 (2013) 603–610. Doi: 10.1016/j.proenv.2013.02.076
  35. [35]. G. Borowski, J.J. Hycnar, Utilization of fine coal waste as a fuel briquettes, International Journal of Coal Preparation and Utilization 33 (2013) 194– 204. Doi: 10.1080/19392699.2013.787993
  36. [36]. S.Y. Kpalo, M.F. Zainuddin, L.A. Manaf, A.M. Roslan, Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria, Journal of Cleaner Production 284 (2021). Doi: 10.1016/j.jclepro.2020.124745
  37. [37]. M.P.P. Granado, Y.V.M. Suhogusoff, L.R.O. Santos, F.M. Yamaji, A.C.D. Conti, Effects of pressure densification on strength and properties of cassava waste briquettes, Renewable Energy 167 (2021) 306–312. Doi: 10.1016/j.renene.2020.11.087
  38. [38]. J. Nagarajan, L. Prakash, Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk, Materials Today: Proceedings 47 (2021) 4194-4198. Doi: 10.1016/j.matpr.2021.04.457
  39. [39]. L. Ifa, S. Yani, N. Nurjannah, D. Darnengsih, A. Rusnaenah, M. Mel, M. Mahfud, H.S. Kusuma, Techno-economic analysis of bio-briquette from cashew nut shell waste, Heliyon 6 (2020) e05009. Doi: 10.1016/j.heliyon.2020.e05009751173433005808
  40. [40]. B. Osei Bonsu, M. Takase, J. Mantey, Preparation of charcoal briquette from palm kernel shells: case study in Ghana, Heliyon 6 (2020) e05266. Doi: 10.1016/j.heliyon.2020.e05266756933833102867
  41. [41]. H. Cabrales, N. Arzola, O. Araque, The effects of moisture content, fiber length and compaction time on African oil palm empty fruit bunches briquette quality parameters, Heliyon 6 (2020) e05607. Doi: 10.1016/j.heliyon.2020.e05607771846233305051
  42. [42]. G.A. Akolgo, E.A. Awafo, E.O. Essandoh, P.A. Owusu, F. Uba, K.A. Adu-Poku, Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests, Scientific African 12 (2021) e00789. Doi: 10.1016/j.sciaf.2021.e00789
DOI: https://doi.org/10.2478/auoc-2022-0022 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 150 - 155
Submitted on: Aug 2, 2022
Accepted on: Sep 20, 2022
Published on: Oct 25, 2022
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2022 Azrul Nurfaiz Mohd-Faizal, Mohd Shafiq Hakimi Mohd-Shaid, Muhammad Abbas Ahmad-Zaini, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.