Have a personal or library account? Click to login

Quantification, sources, and associated risks of 16-priority polycyclic aromatic hydrocarbons from selected land-use impacted soils

Open Access
|Jun 2021

References

  1. [1]. O.L. Faboya, S.O. Sojinu, B.J. Oguntuase, O.O. Sonibare, Impact of forest fires on polycyclic aromatic hydrocarbons concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria, Scientific African 8 (2020) e0033. https://doi.org/10.1016/j.sciaf.2020.e0033110.1016/j.sciaf.2020.e00331
  2. [2]. O.O. Emoyan, O.O. Ejecha, G.O. Tesi, Concentration assessment and source evaluation of 16 priority polycyclic aromatic hydrocarbons in soils from selected vehicle-parks in southern Nigeria, Scientific African 7 (2020) e00296. https://doi.org/10.1016/j.sciaf.2020.e0029610.1016/j.sciaf.2020.e00296
  3. [3]. ATSDR. The priority list of hazardous substances. Division of toxicology and human health sciences, Agency for Toxic Substances and Disease Registry (2017). https://www.atsdr.cdc.gov/spl/index.html
  4. [4]. A.K. Sakhi, E. Cequier, R. Becher, A.K. Bølling, A.R. Borgen, M. Schlabach, N. Schmidbauer, G. Becher, P. Schwarze, C. Thomsen, Concentrations of selected chemicals in indoor air from Norwegian homes and schools, Science of The Total Environment 674 (2019) 1-8. DOI: 10.1016/j.scitotenv.2019.04.08610.1016/j.scitotenv.2019.04.08631003082
  5. [5]. O.O. Emoyan, I.A. Akpoborie, E.E. Akporhonor, The oil and gas industry and the Niger Delta: implications for the environment, Journal of Applied Science and. Environmental Management 12 (2008) 29 – 37. http://www.bioline.org.br/pdf?ja08046
  6. [6]. O.O. Emoyan, E.E. Akporhonor, I.A. Akpoborie, Environmental Risk assessment of River Ijana, Ekpan, Delta State, Nigeria, Journal of Chemical Speciation Bioavailability 20 (2008) 23-32. https://doi.org/10.1080/09542299.2008.1107377010.1080/09542299.2008.11073770
  7. [7]. C.M.A. Iwegbue, G.O. Tesi, L.C. Overah, O.O. Emoyan, G.E. Nwajei, B.C. Martincigh, Effects of flooding on the sources, spatiotemporal characteristics and human health risks of polycyclic aromatic hydrocarbons in floodplain soils of the lower parts of the River Niger, Nigeria, Journal of Polycyclic Aromatic Compounds 40 (2020) 228-244. http:///doi.org/10.1080/10406638.2017.140332910.1080/10406638.2017.1403329
  8. [8]. I.J. Keyte, A. Albinet, R.M. Harrison, On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro-derivative compounds measured in road tunnel environments, Science of The Total Environment 566-567 (2016) 1131-1142. https://doi.org/10.1016/j.scitotenv.2016.05.15210.1016/j.scitotenv.2016.05.15227312273
  9. [9]. X. Duan, Y. Li, Sources and Fates of BTEX in the general environment and its distribution in coastal cities of China, Journal of Environmental Science and Public Health 1 (2017) 86-106. https://www.doi.org/10.26502/jesph.961200910.26502/jesph.9612009
  10. [10]. C.A. Stapleton, D.W. Haywick, M.L. Julius, L. Novoveská, J.F. Valentine, How anthropogenic activities impacted Polecat Bay near mobile, Alabama, USA: a paleoecological study and forensic investigation, Journal of Environmental. Forensics 22 (2021) 251-269. https://doi.org/10.1080/15275922.2020.183607310.1080/15275922.2020.1836073
  11. [11]. J. Hu, C. Liu, Q. Guo, J. Yang, C.P. Okoli, Y. Lang, Z. Zhao, S. Li, B. Liu, G. Song, Characteristics, source and potential ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River Basin, North East China, Environmental Science and Pollution Research International 24 (2017) 17090-17102. DOI: 10.1007/s11356-017-9057-710.1007/s11356-017-9057-728585008
  12. [12]. D. Crnković, Z. Sekulić, D. Antonović, A. Marinković, S. Popović, J. Nikolić, S. Drmanić, Origins of polycyclic aromatic hydrocarbons in sediments from the Danube and Sava Rivers and their tributaries in Serbia, Polish Journal of Environmental Studies 29 (2020) 2101-2110. DOI: https://doi.org/10.15244/pjoes/11131910.15244/pjoes/111319
  13. [13]. P.W.G. Liu, Y.C. Yao, J-H. Tsai, Y.-C. Hsu, L.P. Chang, K.H. Chang, Source impacts by volatile organic compounds in an industrial city of Southern Taiwan, Science of The Total Environment. 398 (2008) 154-163. https://doi.org/10.1016/j.scitotenv.2008.02.05310.1016/j.scitotenv.2008.02.05318448149
  14. [14]. ESI Africa. Africa’s Power Journal. The World Bank urban air pollution. South Asian urban air quality management briefing. 2001. 2017, Note No. 7. Assessed 8th June 2020. www.esi_africa.com. ESMAP
  15. [15]. O.O. Emoyan, Quantification and cancer risk evaluation of polycyclic aromatic hydrocarbons in soil around selected telecom masts in Delta State Nigeria, Egyptian Journal of Chemistry 63 (2020) 433-448. https://doi.org/10.21608/ejchem.2019.17620.208110.21608/ejchem.2019.17620.2081
  16. [16]. UNEP. Environmental Assessment of Ogoni land. United Nations Environment Programme (UNEP). No. DEP/1337/GE (2011) 262.
  17. [17]. O.O. Emoyan, Bioremediation of in-situ crude oil contaminated soil using selected organic dung, Egyptian Journal of Chemistry 63 (2020) 2827-2836. doi.org/10.21608/ejchem.2020.18048.209810.21608/ejchem.2019.17620.2081
  18. [18]. D. Orazbayeva, B. Kenessov, J.A. Koziel, D. Nassyrova, N. Lyabukhova, Quantification of BTEX in soil by headspace SPME-GC-MS using combined standard addition and internal standard calibration, Agricultural and Biosystems Engineering Publications 80 (2017) 1249-1256. DOI10.1007/s10337-017-3340-010.1007/s10337-017-3340-0
  19. [19]. C.M.A. Iwegbue, M.J. Ehigbor, G.O. Tesi, O. Eguavoen, B.S. Martincigh, Occurrence, sources and exposure risk of polycyclic aromatic hydrocarbons (PAHs) in street dusts from the Nigerian megacity, Lagos, Journal of Polycyclic Aromatic Compounds (2020). http:///doi.org/10.1080/10406638.2020.171602710.1080/10406638.2020.1716027
  20. [20]. CCME. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Benzo [a] Pyrene. In: Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment. Winnipeg. Retreived June 2020 (2010) Canada. 235. Retreived June 2020 https://www.esdat.net/Environmental%20Standards/Canada/SOIL/rev_soil_summary_tbl_7.0_e.pdf
  21. [21]. O.O. Emoyan, P.O. Agbaire, E. Ohwo, G.O. Tesi Priority mono-aromatics measured in anthropogenic impacted soils from Delta, Nigeria: concentrations, origin, and human health risk, Environmental Forensics (2021). https://doi.org/10.1080/15275922.2021.189288010.1080/15275922.2021.1892880
  22. [22]. S.B. Olobaniyi, J.E. Ogala, B.N. Nfor, Hydrogeochemical and bacterialogical assessment of groundwater in Agbor area, southern Nigeria, Journal of Mining and Geology 43 (2007) 79-89. https://doi.org/10.4314/jmg.v43i1.1886710.4314/jmg.v43i1.18867
  23. [23]. USEPA, Regional screening levels (RSL) summary tables. Screening-levels-risks-generic-tables. Accessed on 19th November, 2020 (2020). https://www.epa.gov/risk/regional
  24. [24]. USEPA, Regional screening levels (RSL) summary tables. Accessed on 21 December, 2019. Screening-table-generic-tables. (2010). http://www.epa.gov/risk/risk-based-
  25. [25]. NYSDOH. Hopewell precision area contamination: Appendix C-NYS DOH, In: Procedure for evaluating potential health risks for contaminants of concern. New York States Department of Health (2007). https://www.health.ny.gov/environmental/investigations/hopewell/appendc.htm
  26. [26]. E.R. Long, D.D. MacDonald, Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems, Human and Ecological Risk Assessment 4 (1998) 1019–1039. doi.org/10.1080/1080703989128495610.1080/10807039891284956
  27. [27]. E.R. Long, D.D. MacDonald, S.L. Smith, F.D. Calder, Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments, Journal of Environmental Management 19 (1995) 81–97. https://doi.org/10.1007/BF0247200610.1007/BF02472006
  28. [28]. M. Radziemska, J. Fronczyk, Level and Contamination Assessment of soil along an expressway in an ecologically valuable Area in Central Poland, International Journal Environmental Resources and Public Health 12 (2015) 13372-13387. https://doi.org/10.3390/ijerph12101337210.3390/ijerph121013372462703626512684
  29. [29]. G.M. Pierzynski, J.T. Sims, G.F. Vance, Soils and Environmental Quality, p. 592, 3rd Edition, Boca Raton, CRC Press, Taylor & Francis (2000). https://www.routledge.com/Soils-and-Environmental-Quality/Pierzynski-Vance-Sims/p/book/9780849316166
  30. [30]. J. Harmsen, W.H. Rulkens, R.C. Sims, P.E. Rijtema, A.J. Zweers, Theory and application of land farming to remediate polycyclic aromatic hydrocarbons and mineral oil-contaminated sediments: Beneficial reuse, Journal of Environmental Quality 36 (2007) 1112-1122. https://doi.org/10.2134/jeq2006.016310.2134/jeq2006.016317596619
  31. [31]. O.O. Emoyan, S.O. Akporido, P.O. Agbaire, Effects of soil pH, total organic carbon and texture on fate of polycyclic aromatic hydrocarbons (PAHs) in Soils, Global NEST Journal 20 (2018) 181-187. https://doi.org/10.30955/gnj.00227710.30955/gnj.002277
  32. [32]. DPR-EGASPIN. Environmental guidelines and standard for the petroleum industry in Nigeria (revised edition. Department of Petroleum Resources, Ministry of Petroleum and Mineral Resources, Abuja Nigeria (2002) 320. https://ngfcp.dpr.gov.ng/media/1066/dprs-egaspin-2002
  33. [33]. B. Maliszewska-Kordybach, Polycyclic aromatic hydrocarbons in agricultural soils in Pol &: preliminary proposals for criteria to evaluate the level of soil contamination, Applied Geochemistry 11 (1996) 121-127. DOI: 10.1016/0883-2927(95)00076-310.1016/0883-2927(95)00076-3
  34. [34]. P. Baumard, H. Budzinski, P. Garrigues, H. Dizer, P.D. Hansen, Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilusedulis) from Western Baltic Sea: occurrence, bioavailability and seasonal variations, Marine Environmental Research 47 (1999) 17-47. https://doi.org/10.1016/S0141-1136(98)00105-610.1016/S0141-1136(98)00105-6
  35. [35]. O.O. Emoyan, C.C. Ikechukwu, G.O. Tesi, Occurrence and sources of aliphatic hydrocarbons in anthropogenic impacted soils from petroleum tank-farms in the Niger Delta, Nigeria, Ovidius University Annals of Chemistry 31 (2020) 66-72. https://doi.org/10.2478/auoc-2020-002210.2478/auoc-2020-0022
  36. [36]. J. Pinedo, R. Ibáñez, J.P.A. Lijzen, A. Irabien, Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances, Journal of Environmental Management 130 (2013) 72-79. DOI: 10.1016/j.jenvman.2013.08.04810.1016/j.jenvman.2013.08.04824064142
  37. [37]. B.J. Alloway, Land contamination and reclamation. In: Arriso R.M. (ed). Understanding our environment: an introduction to environmental chemistry and pollution, pp. 200–236, 3rd Ed., Royal Society of Chemistry Press, UK (1999). https://pubs.rsc.org/en/content/ebook/978-0-85404-584-6
  38. [38]. T.N. Nganje, A.E. Edet, S.J. Ekwere, Distribution of PAHs in surface soils from petroleum handling facilities in Calabar, Environmental Monitoring Assessment 130 (2007) 27-34. DOI: 10.1007/s10661-006-9453-910.1007/s10661-006-9453-917106773
  39. [39]. T.N. Nganje, A.E. Edet, U.J. Ibok, E.J. Ukpabio, K.A. Ibe, P. Neji, Polycyclic aromatic hydrocarbons in surface water and soil in the vicinity of fuel-oil spillage from a tank farm distribution facility, Esuk Utan, Calabar Municipality, Nigeria, Environmental Earth Sciences 67 (2007) 81-90. DOI: 10.1007/s12665-011-1481-210.1007/s12665-011-1481-2
  40. [40]. O.S. Sojinu, J.Z. Wang, O.O. Sonibare, E.Y. Zeng, Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria. J. Haz. Mat. 174 2010) 641-647.DOI: 10.1016/j.jhazmat.2009.09.09910.1016/j.jhazmat.2009.09.09919833432
  41. [41]. O.O. Emoyan, P.O. Agbaire, C. Otobrise, E.E. Akporhonor, Distribution pattern of polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of fuel stations in Abraka, Nigeria, Journal Applied Science and Environmental Management. 15 (2011) 513-516. https://www.ajol.info/index.php/jasem/article/view/88775
  42. [42]. J. Cai, S. Gao, L. Zhu, X. Jia, X. Zeng, Z. Yu, Occurrence and source apportionment of polycyclic aromatic hydrocarbons in soils and sediment from Hanfeng Lake, Three Gorges, China, Journal Environmental Science and Health Part A. Toxic/Hazardous Substance and Environmental Engineering 52 (2017) 1226-1232. https://doi.org/10.1080/10934529.2017.135618510.1080/10934529.2017.135618528920758
  43. [43]. Y. Liu, Y. Wu, Y. Xia, T. Lei, C. Tian, X. Hou, Aliphatic and polycyclic aromatic hydrocarbons PAHs in soils of the northwest Qinling mountains: patterns, potential risk and an appraisal of the PAH ratios to infer their source, Journal Environmental Science and Health Part A. Toxic/Hazardous Substance and Environmental Engineering 52 (2017) 320-332. https://doi.org/10.1080/10934529.2016.125886510.1080/10934529.2016.125886527925506
  44. [44]. A. Ekanem, E. Ikpe, I. Ekwere, Assessment of polycyclic aromatic hydrocarbons level in soils around automobile repair workshops within Eket metropolis, Akwa-Ibom State, Nigeria, International Journal of Research and Scientific Innovation 6 (2019) 102-107. https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-6-issue-1/102-107.pdf10.1007/s42452-019-0397-4
  45. [45]. S. Spahr, M. Teixidó, D.L. Sedlak, R.G. Luthy, Hydrophilic trace organic contaminants in urban storm water: occurrence, toxicological relevance, and the need to enhance green storm water infrastructure: A critical review, Environmental Science: Water Research Technology 7 (2019) 36-49. https://doi.org/10.1039/C9EW00674E10.1039/C9EW00674E
  46. [46]. M.J. Gómez, S. Herrera, D. Solé, E. García-Calvo, A.R. Fernández-Alba, Spatio-temporal evaluation of organic contaminants and their transformation products along a river basin affected by urban, agricultural and industrial pollution, Science of The Total Environment 420 (2012) 134-145. DOI: 10.1016/j.scitotenv.2012.01.02910.1016/j.scitotenv.2012.01.029
  47. [47]. R. Gioia, A.J. Akindele, S.A. Adebusoye, K.A. Asante, S. Tanabe, A. Buekens, A.J. Sasco, Polychlorinated biphenyls (PCBs) in Africa: a review of environmental levels, Environmental Science and Pollution Research International 21 (2013) 6278-6289. DOI: 10.1007/s11356-013-1739-110.1007/s11356-013-1739-1
  48. [48]. R. Olawoyin, R.L. Grayson, O.T. Okareh, Eco-toxicological and epidemiological assessment of human exposure to polycyclic aromatic hydrocarbons in the Niger Delta, Nigeria, Toxicology and Environmental Health Sciences 4 (2012) 173-185. https://doi.org/10.1007/s13530-012-0133-610.1007/s13530-012-0133-6
  49. [49]. C.M.A. Iwegbue, G. Obi, Distribution, sources, and health risk assessment of polycyclic aromatic hydrocarbons in dust from urban environment in the Niger Delta, Nigeria, Human and Environmental Risk Assessment An International Journal 22 (2016) 623-638. https://doi.org/10.1080/10807039.2015.110015710.1080/10807039.2015.1100157
  50. [50]. H.H. Soclo, P.H. Garrigues, M. Ewald, Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) Areas, Maine Pollution Bulletin 40 (2000) 387-96. http://dx.doi.org/10.1016/S0025-326X(99)00200-310.1016/S0025-326X(99)00200-3
  51. [51]. M.B. Yunker, R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette, S. Sylvestre, PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition, Organic Geochemistry 33 (2002) 489-515. https://doi.org/10.1016/S0146-6380(02)00002-510.1016/S0146-6380(02)00002-5
  52. [52]. E.C. Nava-Martinez, E. Garcia-Flores, J.H. Espinoza-Gomez, F.T. Wakida, Heavy metals pollution in the soil of an irregular urban settlement built on a former dumpsite in the city of Tijuana, Mexico, Environmental Earth Sciences 66 (2011) 1239–1245. DOI: 10.1007/s12665-011-1335-y10.1007/s12665-011-1335-y
  53. [53]. E. Garcia-Flores, F.T. Wakida, J.H. Espinoza-Gomez, Sources of polycyclic aromatic hydrocarbons in urban storm water runoff in Tijuana, Mexico, International Journal of Environmental Research 7 (2013) 387-394. DOI: 10.22059/ijer.2013.617
  54. [54]. B.M. Jerkins, A.D. Jones, S.Q. Turn, R.B. Williams, Emission factors of polycyclic aromatic hydrocarbons from biomass burning, Environmental Science Technology 30 (1996) 2462-2469. DOI: 10.1021/es950699m10.1021/es950699m
  55. [55]. B. Yang, N. Xue, L. Zhou, F. Li, X. Cong, B. Han, H. Li, Y. Yan, B. Liu, Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China, Ecotoxicology and Environmental Safety 84 (2012) 304– 310. DOI: 10.1016/j.ecoenv.2012.07.02710.1016/j.ecoenv.2012.07.02722902165
  56. [56]. T.T.T. Dong, B.K. Lee, Characteristics, toxicity and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea, Chemosphere 74 (2009) 1245-1253. DOI: 10.1016/j.chemosphere.2008.11.03510.1016/j.chemosphere.2008.11.03519103459
  57. [57]. G.O. Tesi, J.O. Ojegu, S.O. Akporido, Chemical speciation and mobility of heavy metals in soils of refuse dumpsites in some urban towns in the Niger Delta, Ovidius University Annals of Chemistry 31 (2020) 66-72.10.2478/auoc-2020-0013
  58. [58]. C.M.A. Iwegbue, G. Obi, O.O. Emoyan, E.W. Odali, F.E. Egobueze, G.O. Tesi, G.E. Nwajei, B.C. Martincigh, Characterization of metals in indoor dusts from electronic workshops, cybercafés and offices in southern Nigeria: Implications for On-Site Human Exposure, Ecotoxicology and Environmental Safety 159 (2018) 342–353. DOI: 10.1016/j.ecoenv.2018.04.07010.1016/j.ecoenv.2018.04.07029775830
  59. [59]. J. Chen, H. Wu, H. Qian, Y. Gao, Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China, Exposure and Health 9 (2017) 183-195. https://doi.org/10.1007/s12403-016-0231-910.1007/s12403-016-0231-9
  60. [60]. H. Qian, J. Chen, K.W.F. Howard, Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system, Environmental Pollution 263 (2020) 114669. DOI: 10.1016/j.envpol.2020.11466910.1016/j.envpol.2020.11466933618462
  61. [61]. J. Chen, H. Qian, Y. Gao, H. Wang, M. Zhang, Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions, Journal of Hydrology 581 (2020) 124386. https://doi.org/10.1016/j.jhydrol.2019.12438610.1016/j.jhydrol.2019.124386
DOI: https://doi.org/10.2478/auoc-2021-0008 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 53 - 62
Submitted on: Dec 21, 2020
Accepted on: Mar 31, 2021
Published on: Jun 14, 2021
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year
Related subjects:

© 2021 Onoriode O. Emoyan, Godswill O. Tesi, Efe Ohwo, Eze W. Odali, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.