Have a personal or library account? Click to login
Batch washing of lead contaminated and spiked soils using extracts of dried Terminalia mantaly, Panicum maximum and Eleusine indica plants Cover

Batch washing of lead contaminated and spiked soils using extracts of dried Terminalia mantaly, Panicum maximum and Eleusine indica plants

Open Access
|Apr 2019

References

  1. [1]. J. Nouri, N. Khorasani, B. Lorestani, M. Karami, A.H. Hassani, N. Yousefi, Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential, Environ Earth Sci. 59 (2009) 315-323.10.1007/s12665-009-0028-2
  2. [2]. A. Boularbah, C. Schwartz, G. Bitton, W. Aboudrar, A. Ouhammou, J.L. Morel, Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants, Chemosphere 63 (2006) 811–817.10.1016/j.chemosphere.2005.07.076
  3. [3]. F.A. Jan, M. Ishaq, I. Lhsanullah, S.M. Asim, Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: a case study from the City of Peshawar and district Dir Lower, J. Hazard. Mater. 176 (2010) 609–616.10.1016/j.jhazmat.2009.11.073
  4. [4]. M.K. Zhang, Y.Z Liu, H. Wang, Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice, Communication Soil Sci. Plant Anal. 41 (2010) 820-831.10.1080/00103621003592341
  5. [5]. H.B. Li, S. Yu, G.L. Li, Y. Liu, G.B. Yu, H. Deng, S.C. Wu, M.H. Wong, Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks, Sci. Total Environ. 432 (2012) 202–209.10.1016/j.scitotenv.2012.05.100
  6. [6]. K. Lock, C.R. Janssen, Influence of ageing on copper bioavailability in soils, Environ. Toxicol. Chemistry 22 (2003) 1162-1166.10.1002/etc.5620220527
  7. [7]. B. Nowack, R. Schulin, J. Luster, Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability, Environ. Pollut. 158 (2010) 3272-3278.10.1016/j.envpol.2010.07.020
  8. [8]. N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, K. Scheckel, Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize?, J. Hazard. Mater. 266 (2014)141–166.10.1016/j.jhazmat.2013.12.018
  9. [9]. R.E. Cameron, Guide to site and soil description for hazardous waste site characterization. Volume 1: Metals. Environmental Protection Agency EPA/600/4-91/029 (1992).
  10. [10]. W. Ling, Q. Shen, Y. Gao, X. Gu, Z. Yang, Use of bentonite to control the release of copper from contaminated soils, Australian J. Soil Res. 45 (2007) 618-623.10.1071/SR07079
  11. [11]. GOC, Remediation technologies: A reference manual. Contaminated sites working group. Ontario, Chapter 6 (2003).
  12. [12]. GWRTAC, Remediation of metals-contaminated soils and groundwater. Tech Rep. TE-97-01, GWRTAC, Pittsburgh, Pa, USA, GQRTAC-E series (1997).
  13. [13]. M.I. Kuhlman, T.M. Greenfield, Simplified soil washing processes for a variety of soils, J. Hazard. Mater. 66 (1999) 31-45.10.1016/S0304-3894(98)00212-X
  14. [14]. M. Udovic, D. Lestan, EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact, Chemosphere 88 (2012)718–724.10.1016/j.chemosphere.2012.04.040
  15. [15]. M.H. Lee, I.S. Paik, W.H. Do, I.S. Kim, Y.S. Lee, S.H. Lee, Soil washing of As-contaminated stream sediments in the vicinity of an abandoned mine in Korea, Environ. Geochem. Health. 29 (2007) 19–329.10.1007/s10653-007-9093-1
  16. [16]. L. Jean-Soro, F. Bordas, J.C. Bollinger, Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid, Environ. Pollut. 164 (2012) 175–18110.1016/j.envpol.2012.01.02222361057
  17. [17]. E.U. Etim, Lead removal from contaminated shooting range soil using acetic acid potassium chloride washing solution and electrochemical reduction, J. Health Pollut. 13 (2017) 22-34.10.5696/2156-9614-7-13.22623652630524811
  18. [18]. B. Kos, L. Domen, Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers, Environ. Sci. Technol. 37 (2003) 624-9.10.1021/es020079312630481
  19. [19]. X. Ou-Yang, J.W. Chen, X.G. Zhang, Advance in supercritical CO2 fluid extraction of contaminants from soil, Geolog. Bullet. China. 29 (2010) 1655-61.
  20. [20]. B.E. Reed, P.C. Carriere, R. Moore, Flushing of Pb (II) contaminated soil using HCl, EDTA, and CaCl2, J. Environ. Eng. 122 (1996) 48-50.10.1061/(ASCE)0733-9372(1996)122:1(48)
  21. [21]. G. Dermont, M. Bergeron, G. Mercier, M. Richer-Lafieche, Soil washing for metal removal: A review of physical/chemical technologies and filed applications, J. Hazard. Mater. 152 (2008) 1-31.10.1016/j.jhazmat.2007.10.043
  22. [22]. L.G. Torres, R.B. Lopez, M. Beltran, Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing, Physical Chem. Earth. 37 (2012) 30–36.10.1016/j.pce.2011.02.003
  23. [23]. C.N. Mulligan, R.N. Yong, B.F. Gibbs, Surfactant-enhanced remediation of contaminated soil: A review, Eng. Geol. 60 (2001) 371-380.10.1016/S0013-7952(00)00117-4
  24. [24]. K.J. Hong, S. Tokunaga, T. Kajiuchi, Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils, Chemosphere 49 (2002) 379-87.10.1016/S0045-6535(02)00321-1
  25. [25]. C.N. Mulligan, Environmental applications for biosurfactants. Environ. Pollut. 133 (2005) 183-198.10.1016/j.envpol.2004.06.009
  26. [26]. Z.M. Gusiatin, E. Klimiuk, Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin, Chemosphere 86 (2012) 383-391.10.1016/j.chemosphere.2011.10.02722099538
  27. [27]. W. Zhou, X. Wang, C. Chen, L. Zhu, Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin, Colloid. Surf. A 425 (2013) 122-128.10.1016/j.colsurfa.2013.02.055
  28. [28]. J.P. Maity, Y.M. Huang, H. Chun-Mei, I.W. Ching, C. Chien-Cheng, L. Chun-Yi. J. Jiin-Shuh, C. Young-Fo, C. Chen-Yen, Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: A comparative effectiveness assessment, Chemosphere 92 (2013) 1286-1293.10.1016/j.chemosphere.2013.04.060
  29. [29]. R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: A review of sources, chemistry, risk and best available strategies for remediation. ISRN Ecology. Article ID 402647, 20 pages. Doi: 10.5402/2011/402647 (2012).10.5402/2011/402647
  30. [30]. K.R. Reddy, S. Chinthamreddy, Comparison of extractants for removing heavy metals from contaminated clayey soils, Soil Sed. Contam. 9 (2000) 449-462.10.1080/10588330091134347
  31. [31]. R.A. Wuana, F.E. Okieimen, J.A. Imborvungu, Removal of heavy metals from a contaminated soil using organic chelating acids, Inter. J. Environ. Sci. Technol. 7 (2010) 485-496.10.1007/BF03326158
  32. [32]. E.O. McLean, Soil pH and lime requirement. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of soil analysis, American Society of Agronomy, pp. 199-223, Madison, Wisconsin, USA (1982).10.2134/agronmonogr9.2.2ed.c12
  33. [33]. International Institute of Tropical Agriculture, IITA Selected methods for soil and plant analysis. Manual series No. 1, pp. 2-6, IITA, Ibadan (2001).
  34. [34]. A. Walkley, I.A. Black, An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method, Soil Sci. 37 (1984) 29-38.10.1097/00010694-193401000-00003
  35. [35]. R.H. Bray, L.T. Kurtz, Determination of total organic and available forms of phosphorus in soils, Soil Sci. 59 (1945) 39-45.10.1097/00010694-194501000-00006
  36. [36]. J.M. Bremner, C.S Mulvaney, Nitrogen-total. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of soil analysis, American Society of Agronomy, pp. 595-624, Madison, Wisconsin, USA (1982).10.2134/agronmonogr9.2.2ed.c31
  37. [37]. J.D. Rhoades, Soluble salt. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of soil analysis, Part 2. American Society of Agronomy, pp. 167-180, Madison, Wisconsin, USA (1982).10.2134/agronmonogr9.2.2ed.c10
  38. [38]. H. Niskavaara, C. Reimann, V. Chekushin, G. Kashulina, Seasonal variability of total and easily leachable elements in top soils (0-5 cm) from eight catchments in the European artic (Finland, Norway and Russia), Environ. Pollut. 96 (1997) 261-74.10.1016/S0269-7491(97)00031-6
  39. [39]. A. Tessier, P.G.C. Campbell, M. Bisson, Sequential extraction procedures for the speciation of particulate trace metals, Anal. Chem. 51 (1979) 844-881.10.1021/ac50043a017
  40. [40]. B.J. Alloway, Soil processes and the behavior of metals, Blackie Academic and Professional, London (1997).
  41. [41]. E.U. Etim, P.C. Onianwa, Lead contamination of soil in the vicinity of a military shooting range in Ibadan, Nigeria, Toxicol. Environ. Chem. 94 (2012) 895-905.10.1080/02772248.2012.678997
  42. [42]. W. Li, R.W. Peters, M.D. Brewster, G.A. Miller, Sequential extraction evaluation of heavy metals contaminated soils: How clean is clean? In: Proceedings of the Air and Waste Management Association, 88th Annual Meeting and Exhibition, San Antonio, Texas (1995).
DOI: https://doi.org/10.2478/auoc-2019-0006 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 29 - 36
Submitted on: Feb 1, 2019
|
Accepted on: Mar 15, 2019
|
Published on: Apr 15, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2019 Effiong Ukorebi Etim, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.