Have a personal or library account? Click to login

Batch washing of lead contaminated and spiked soils using extracts of dried Terminalia mantaly, Panicum maximum and Eleusine indica plants

Open Access
|Apr 2019

References

  1. [1]. J. Nouri, N. Khorasani, B. Lorestani, M. Karami, A.H. Hassani, N. Yousefi, Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential, Environ Earth Sci. 59 (2009) 315-323.10.1007/s12665-009-0028-2
  2. [2]. A. Boularbah, C. Schwartz, G. Bitton, W. Aboudrar, A. Ouhammou, J.L. Morel, Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants, Chemosphere 63 (2006) 811–817.10.1016/j.chemosphere.2005.07.076
  3. [3]. F.A. Jan, M. Ishaq, I. Lhsanullah, S.M. Asim, Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: a case study from the City of Peshawar and district Dir Lower, J. Hazard. Mater. 176 (2010) 609–616.10.1016/j.jhazmat.2009.11.073
  4. [4]. M.K. Zhang, Y.Z Liu, H. Wang, Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice, Communication Soil Sci. Plant Anal. 41 (2010) 820-831.10.1080/00103621003592341
  5. [5]. H.B. Li, S. Yu, G.L. Li, Y. Liu, G.B. Yu, H. Deng, S.C. Wu, M.H. Wong, Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks, Sci. Total Environ. 432 (2012) 202–209.10.1016/j.scitotenv.2012.05.100
  6. [6]. K. Lock, C.R. Janssen, Influence of ageing on copper bioavailability in soils, Environ. Toxicol. Chemistry 22 (2003) 1162-1166.10.1002/etc.5620220527
  7. [7]. B. Nowack, R. Schulin, J. Luster, Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability, Environ. Pollut. 158 (2010) 3272-3278.10.1016/j.envpol.2010.07.020
  8. [8]. N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park, T. Makino, M.B. Kirkham, K. Scheckel, Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize?, J. Hazard. Mater. 266 (2014)141–166.10.1016/j.jhazmat.2013.12.018
  9. [9]. R.E. Cameron, Guide to site and soil description for hazardous waste site characterization. Volume 1: Metals. Environmental Protection Agency EPA/600/4-91/029 (1992).
  10. [10]. W. Ling, Q. Shen, Y. Gao, X. Gu, Z. Yang, Use of bentonite to control the release of copper from contaminated soils, Australian J. Soil Res. 45 (2007) 618-623.10.1071/SR07079
  11. [11]. GOC, Remediation technologies: A reference manual. Contaminated sites working group. Ontario, Chapter 6 (2003).
  12. [12]. GWRTAC, Remediation of metals-contaminated soils and groundwater. Tech Rep. TE-97-01, GWRTAC, Pittsburgh, Pa, USA, GQRTAC-E series (1997).
  13. [13]. M.I. Kuhlman, T.M. Greenfield, Simplified soil washing processes for a variety of soils, J. Hazard. Mater. 66 (1999) 31-45.10.1016/S0304-3894(98)00212-X
  14. [14]. M. Udovic, D. Lestan, EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact, Chemosphere 88 (2012)718–724.10.1016/j.chemosphere.2012.04.040
  15. [15]. M.H. Lee, I.S. Paik, W.H. Do, I.S. Kim, Y.S. Lee, S.H. Lee, Soil washing of As-contaminated stream sediments in the vicinity of an abandoned mine in Korea, Environ. Geochem. Health. 29 (2007) 19–329.10.1007/s10653-007-9093-1
  16. [16]. L. Jean-Soro, F. Bordas, J.C. Bollinger, Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid, Environ. Pollut. 164 (2012) 175–18110.1016/j.envpol.2012.01.02222361057
  17. [17]. E.U. Etim, Lead removal from contaminated shooting range soil using acetic acid potassium chloride washing solution and electrochemical reduction, J. Health Pollut. 13 (2017) 22-34.10.5696/2156-9614-7-13.22623652630524811
  18. [18]. B. Kos, L. Domen, Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers, Environ. Sci. Technol. 37 (2003) 624-9.10.1021/es020079312630481
  19. [19]. X. Ou-Yang, J.W. Chen, X.G. Zhang, Advance in supercritical CO2 fluid extraction of contaminants from soil, Geolog. Bullet. China. 29 (2010) 1655-61.
  20. [20]. B.E. Reed, P.C. Carriere, R. Moore, Flushing of Pb (II) contaminated soil using HCl, EDTA, and CaCl2, J. Environ. Eng. 122 (1996) 48-50.10.1061/(ASCE)0733-9372(1996)122:1(48)
  21. [21]. G. Dermont, M. Bergeron, G. Mercier, M. Richer-Lafieche, Soil washing for metal removal: A review of physical/chemical technologies and filed applications, J. Hazard. Mater. 152 (2008) 1-31.10.1016/j.jhazmat.2007.10.043
  22. [22]. L.G. Torres, R.B. Lopez, M. Beltran, Removal of As, Cd, Cu, Ni, Pb, and Zn from a highly contaminated industrial soil using surfactant enhanced soil washing, Physical Chem. Earth. 37 (2012) 30–36.10.1016/j.pce.2011.02.003
  23. [23]. C.N. Mulligan, R.N. Yong, B.F. Gibbs, Surfactant-enhanced remediation of contaminated soil: A review, Eng. Geol. 60 (2001) 371-380.10.1016/S0013-7952(00)00117-4
  24. [24]. K.J. Hong, S. Tokunaga, T. Kajiuchi, Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils, Chemosphere 49 (2002) 379-87.10.1016/S0045-6535(02)00321-1
  25. [25]. C.N. Mulligan, Environmental applications for biosurfactants. Environ. Pollut. 133 (2005) 183-198.10.1016/j.envpol.2004.06.009
  26. [26]. Z.M. Gusiatin, E. Klimiuk, Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin, Chemosphere 86 (2012) 383-391.10.1016/j.chemosphere.2011.10.02722099538
  27. [27]. W. Zhou, X. Wang, C. Chen, L. Zhu, Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin, Colloid. Surf. A 425 (2013) 122-128.10.1016/j.colsurfa.2013.02.055
  28. [28]. J.P. Maity, Y.M. Huang, H. Chun-Mei, I.W. Ching, C. Chien-Cheng, L. Chun-Yi. J. Jiin-Shuh, C. Young-Fo, C. Chen-Yen, Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: A comparative effectiveness assessment, Chemosphere 92 (2013) 1286-1293.10.1016/j.chemosphere.2013.04.060
  29. [29]. R.A. Wuana, F.E. Okieimen, Heavy metals in contaminated soils: A review of sources, chemistry, risk and best available strategies for remediation. ISRN Ecology. Article ID 402647, 20 pages. Doi: 10.5402/2011/402647 (2012).10.5402/2011/402647
  30. [30]. K.R. Reddy, S. Chinthamreddy, Comparison of extractants for removing heavy metals from contaminated clayey soils, Soil Sed. Contam. 9 (2000) 449-462.10.1080/10588330091134347
  31. [31]. R.A. Wuana, F.E. Okieimen, J.A. Imborvungu, Removal of heavy metals from a contaminated soil using organic chelating acids, Inter. J. Environ. Sci. Technol. 7 (2010) 485-496.10.1007/BF03326158
  32. [32]. E.O. McLean, Soil pH and lime requirement. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of soil analysis, American Society of Agronomy, pp. 199-223, Madison, Wisconsin, USA (1982).10.2134/agronmonogr9.2.2ed.c12
  33. [33]. International Institute of Tropical Agriculture, IITA Selected methods for soil and plant analysis. Manual series No. 1, pp. 2-6, IITA, Ibadan (2001).
  34. [34]. A. Walkley, I.A. Black, An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method, Soil Sci. 37 (1984) 29-38.10.1097/00010694-193401000-00003
  35. [35]. R.H. Bray, L.T. Kurtz, Determination of total organic and available forms of phosphorus in soils, Soil Sci. 59 (1945) 39-45.10.1097/00010694-194501000-00006
  36. [36]. J.M. Bremner, C.S Mulvaney, Nitrogen-total. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of soil analysis, American Society of Agronomy, pp. 595-624, Madison, Wisconsin, USA (1982).10.2134/agronmonogr9.2.2ed.c31
  37. [37]. J.D. Rhoades, Soluble salt. In: A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of soil analysis, Part 2. American Society of Agronomy, pp. 167-180, Madison, Wisconsin, USA (1982).10.2134/agronmonogr9.2.2ed.c10
  38. [38]. H. Niskavaara, C. Reimann, V. Chekushin, G. Kashulina, Seasonal variability of total and easily leachable elements in top soils (0-5 cm) from eight catchments in the European artic (Finland, Norway and Russia), Environ. Pollut. 96 (1997) 261-74.10.1016/S0269-7491(97)00031-6
  39. [39]. A. Tessier, P.G.C. Campbell, M. Bisson, Sequential extraction procedures for the speciation of particulate trace metals, Anal. Chem. 51 (1979) 844-881.10.1021/ac50043a017
  40. [40]. B.J. Alloway, Soil processes and the behavior of metals, Blackie Academic and Professional, London (1997).
  41. [41]. E.U. Etim, P.C. Onianwa, Lead contamination of soil in the vicinity of a military shooting range in Ibadan, Nigeria, Toxicol. Environ. Chem. 94 (2012) 895-905.10.1080/02772248.2012.678997
  42. [42]. W. Li, R.W. Peters, M.D. Brewster, G.A. Miller, Sequential extraction evaluation of heavy metals contaminated soils: How clean is clean? In: Proceedings of the Air and Waste Management Association, 88th Annual Meeting and Exhibition, San Antonio, Texas (1995).
DOI: https://doi.org/10.2478/auoc-2019-0006 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 29 - 36
Submitted on: Feb 1, 2019
Accepted on: Mar 15, 2019
Published on: Apr 15, 2019
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year
Related subjects:

© 2019 Effiong Ukorebi Etim, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.