Have a personal or library account? Click to login
Synthesis, Antimalarial Activity, and Docking Studies of Monocarbonyl Analogues of Curcumin Cover

Synthesis, Antimalarial Activity, and Docking Studies of Monocarbonyl Analogues of Curcumin

Open Access
|Oct 2018

References

  1. [1]. World Malaria Report 2014, http://www.who.int/malaria/publications/world_malaria_report_2014/en/ (accessed December 18, 2017).
  2. [2]. A.P. Zambre, V.M. Kulkarni, S. Padhye, S.K. Sandur and B.B. Aggarwal, Novel curcumin analogs targeting TNF-induced NF-kappaB activation and proliferation in human leukemic KBM-5 cells, Bioorg. Med. Chem. 14 (2006) 7196-7204.10.1016/j.bmc.2006.06.056
  3. [3]. N. Handler, W. Jaeger, H. Puschacher, K. Leisser and T. Erker, Synthesis of novel curcumin analogues and their evaluation as selective cyclooxygenase-1 (COX-1) inhibitors, Chem. Pharm. Bull. 55 (2007) 64-71.10.1248/cpb.55.64
  4. [4]. H. Ohtsu, Z. Xiao, J. Ishida, M. Nagai, H. K. Wang, H. Itokawa, C.Y. Su, C. Shih, T. Chiang, E. Chang, Y. Lee, M.Y. Tsai, C. Chang and K.H. Lee, Antitumor Agents. 217. Curcumin Analogues as Novel Androgen Receptor Antagonists with Potential as Anti-Prostate Cancer Agents, J. Med. Chem. 45 (2002) 5037-5042.10.1021/jm020200g
  5. [5]. L. Lin, Q. Shi, C.Y. Su, C.C. Shih and K.H. Lee, Antitumor agents 247. New 4-ethoxycarbonylethyl curcumin analogs as potential antiandrogenic agents, Bioorg. Med. Chem. 14 (2006) 2527-2534.10.1016/j.bmc.2005.11.034
  6. [6]. (a) R.L. Thangapazham, A. Sharma and R.K. Maheshwari, Multiple molecular targets in cancer chemoprevention by curcumin AAPS J. 8 (2006) E443; (b) R. Feng, Y. Lu, L.L. Bowman, Y. Qian, V. Castranova and M. Ding, Inhibition of Activator Protein-1, NF-κB, and MAPKs and Induction of Phase 2 Detoxifying Enzyme Activity by Chlorogenic Acid, J. Biol. Chem. 280 (2005) 27888-27895.
  7. [7]. S.S Sardjiman, M.S. Reksohadiprodjo, L. Hakim, H. Goot and H. Timmerman, 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship, Eur. J. Med. Chem. 32 (1997) 625-630.10.1016/S0223-5234(97)83288-6
  8. [8]. R.A. Sharma, W.P. Steward and A.J. Gescher, Pharmacokinetics and pharmacodynamics of curcumin, Adv. Exp. Med. Biol. 595 (2007) 453-470.10.1007/978-0-387-46401-5_2017569224
  9. [9]. R.K. Maheshwari, A.K. Singh, J. Gaddipati and R.C. Srimal, Multiple biological activities of curcumin: a short review, Life Sci. 78 (2006), 2081-2087.10.1016/j.lfs.2005.12.00716413584
  10. [10]. (a) W. Xingchuan, D. Zhi-Yun, Z. Xi, C. Xiao-Xing, H.C. Allan and Z. Kun, Synthesis and evaluation of curcumin-related compounds for anticancer activity, Eur. J. Med. Chem. 53 (2012) 235-245; (b) R.F. James, P. Bulbul, B. Deepak, P.E. Jonathan, R. Nicholas, A. Dalia, L. Chenglong, L. Jiayuh and L. Pui-Kai, Structure-activity relationship studies of curcumin analogues, Bioorg. Med. Chem. Lett. 19 (2009) 2065-2069; (c) O. Hisatsugu, Y. Hiroyuki, T. Masaki, S. Masatoshi, K. Yuichi, T. Atsuko, T. Shin, K. Satoshi, S. Takao, I. Chikashi, I. Yoshiharu and S. Hiroyuki, Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer, Mol. Cancer Ther. 5 (2006) 2563-2571.
  11. [11]. L. Guang, Y. Shulin, J. Lijuan, Z. Yu, S. Lili, X. Jian, Y. Faqing, L. Yueru and L. Xiaokun, Synthesis and Anti-bacterial Properties of Mono-carbonyl Analogues of Curcumin, Chem. Pharm. Bull. 56 (2008) 162-167.10.1248/cpb.56.16218239300
  12. [12]. H. Lin, G. -X. Hu, J. Guo, Y. Ge, G. Liang, Q. -Q. Lian, Y. Chu, X. Yuan, P. Huang and R. -S. Ge, Mono-carbonyl curcumin analogues as 11β-hydroxysteroid dehydrogenase 1 inhibitors, Bioorg. Med. Chem. Lett. 23 (2013) 4362-4366.10.1016/j.bmcl.2013.05.08023800686
  13. [13]. Z. Fei, D. Huai-Huai, W. Yuan-Hua, W. Tian-Yi,, Y. Ze-Hao, Y. Fang, Z. Da-Zhi, C. Ying-Ying and J. Yong-Sheng, Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole resistant Candida spp, Med. Chem. Commun. 8 (2017) 1093-1102.10.1039/C6MD00649C607198930108820
  14. [14]. (a) L. Ka-Heng, H.A. Farida, S. Ahmad, A. Faridah, S. Khozirah, A.I. Daud and H.L. Nordin, Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and anti-tyrosinase activities, Eur. J. Med. Chem. 44 (2009) 3195-3200; (b) L. Guang, L. Xiaokun, C. Li, Y. Shulin, W. Xudong, S. Elaine, G. Emily, B.H. Phillip, Y. Faqing, L. Yueru and Z. Huiping, Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin, Bioorg. Med. Chem. Lett. 18 (2008) 1525-1529.
  15. [15]. (a) L. Gehad, M.S. Mohamed, H.E. El Sayed, H.E. El Sayed, M.A. Yasmine, M.S. Saied and B. Assem, Synthesis, structure combined with conformational analysis, biological activities and docking studies of bis benzylidene cyclohexanone derivatives, J. Saudi Chem. Soc. 21 (2017) 619-632; (b) C. Chatchawan, P.K. Harry, I. Hasan, M.S. Sajid K.G. Matthew and S. Apichart, Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species, Eur. J. Med. Chem. 45 (2010) 941-956.
  16. [16]. B.A. Rahul, W. Gajanan, K. Neha, R.K. Ravi, K.K. Naveen, S. Dinkar and S.C. Virander, Dibenzylideneacetone analogues as novel Plasmodium falciparum inhibitors, Bioorg. Med. Chem. Lett. 21 (2011) 3034-3036.10.1016/j.bmcl.2011.03.03721493068
  17. [17]. K. Faghihi, M. Hajibeygi and M. Shabanian, Preparation and characterization of new poly(amide-imide) reinforced layer silicate nanocomposite containing N,N′-pyrromellitoyl-bis-l-phenyl acetic acid, J. Polym. Res. 17 (2010) 379-390.10.1007/s10965-009-9324-5
  18. [18]. I. Z. Hanne, S. Dan, C. Jette, H. Lars, H. Henry and W. Jerzy, In Vitro Plasmodium falciparum Drug Sensitivity Assay: Inhibition of Parasite Growth by Incorporation of Stomatocytogenic Amphiphiles into the Erythrocyte Membrane, J. Antimicrob. Agents Chemother. 42 (2002) 1441-1446.10.1128/AAC.46.5.1441-1446.2002
  19. [19]. M.D. Mukhtar, M. Bashir and A.H. Arzai, Comparative in-vitro studies on antiplasmodial quality of some Nigerian and foreign brands of chloroquine oral formulations marketed in kano, Afri. J. Biotechnol. 5 (2006) 2464-2468.
  20. [20]. T. Bodill, A.C. Conibear, G.L. Blatch, K.A. Lobb, and P.T. Kaye, Synthesis and evaluation of phosphonated N-heteroarylcarboxamides as DOXP-reductoisomerase (DXR) inhibitors, Bioorg. Med. Chem. 19 (2011) 1321-1327.10.1016/j.bmc.2010.11.06221216609
  21. [21]. C.M. Adeyemi, Faridoon, M. Isaacs, D. Mnkandhla, H.C. Hoppe, R. Krause and P.T. Kaye, Synthesis and antimalarial activity of N-benzylated (N-arylcarbamoyl)alkylphosphonic acid derivatives, Bioorg. Med. Chem. 24 (2016) 6131-6138.10.1016/j.bmc.2016.04.02127773366
  22. [22]. Dassault Systèmes BIOVIA, Discovery Studio Modelling Environment, Release 2017, San Diego: Dassault Systèmes, 2016.
DOI: https://doi.org/10.2478/auoc-2018-0013 | Journal eISSN: 2286-038X | Journal ISSN: 1583-2430
Language: English
Page range: 92 - 96
Submitted on: Dec 8, 2018
Accepted on: Sep 20, 2018
Published on: Oct 23, 2018
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2018 Amina S. Yusuf, Ibrahim Sada, Yusuf Hassan, Temitope O. Olomola, Christiana M. Adeyemi, Sunday O. Ajibade, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.