Have a personal or library account? Click to login
SHM Monitoring Methods and Sensors with Applications to Composite Helicopter Blades: A Review Cover

SHM Monitoring Methods and Sensors with Applications to Composite Helicopter Blades: A Review

Open Access
|Dec 2020

References

  1. 1. C.R. Farrar, K. Worden, An introduction to structural health monitoring, Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, Vol. 365, No. 1851, pp. 303–315, (2006).10.1098/rsta.2006.1928
  2. 2. W. Hou, W. Zhang, Advanced Composite Materials defects/damages and health monitoring, in Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing), Beijing, pp. 1-5, (2012).
  3. 3. D.M. Amafabia, D. Montalvão, O. David-West, G. Haritos, A Review of Structural Health Monitoring Techniques as Applied to Composite Structures, in SDHM Structural Durability and Health Monitoring, Vol. 11, No. 2, pp. 91-147, (2017).
  4. 4. M. Latifi, F.P. van der Meer, L.J. Sluys, A level set model for simulating fatigue-driven delamination in composites, International Journal of Fatigue, Vol. 80, pp. 434–442, (2015).10.1016/j.ijfatigue.2015.07.003
  5. 5. E. Barbieri, M. Meo, A meshfree penalty-based approach to delamination in composites, Composites Science and Technology, Vol. 69, No. 13, pp. 2169–2177, (2009).10.1016/j.compscitech.2009.05.015
  6. 6. N. Kharghani, C. Guedes Soares, Analysis of composite laminates containing through-the-width and embedded delamination under bending using layerwise HSDT, European Journal of Mechanics - A/Solids, Vol. 82, DOI: 10.1016/j.euromechsol.2020.104003, (2020).10.1016/j.euromechsol.2020.104003
  7. 7. D.Z. Zhang, H. Wang, A.R. Burks, W.L. Cong, Delamination in rotary ultrasonic machining of CFRP composites: finite element analysis and experimental implementation, International Journal Of Advanced Manufacturing Technology, Vol. 107, No. 9-10, pp. 3847-3858, (2020).
  8. 8. L. Banks-Sills, I. Simon, T. Chocron, Multi-directional composite laminates: fatigue delamination propagation in mode I - a comparison, International Journal Of Fracture, Vol. 219, No. 2, pp 175-185, (2019).
  9. 9. A. Argüelles, J. Viña, A.F. Canteli, J. Bonhomme, Fatigue delamination, initiation, and growth, under mode I and II of fracture in a carbon‐fiber epoxy composite, Polymer Composite, Vol. 31, No. 4, pp. 700–706, (2010).10.1002/pc.20855
  10. 10. A. Pantano, Cohesive Model for the Simulation of Crack Initiation and Propagation in Mixed-Mode I/II in Composite Materials, Applied Composite Materials, Vol. 26, No. 4, pp. 1207-1225, (2019).10.1007/s10443-019-09774-6
  11. 11. H.M. Hsia, I.M. Daniel, Elastic properties of composites with fiber waviness, Composites Part A: Applied Science and Manufacturing, Vol. 27, No. 10, pp. 931-941, (1996).
  12. 12. A. Vinet, D. Gamby, Prediction of long-term mechanical behaviour of fibre composites from the observation of micro-buckling appearing during creep compression tests, Composites Science and Technology, Vol. 68, No. 2, pp. 526–536, (2008).10.1016/j.compscitech.2007.06.032
  13. 13. Z. Zheng, J.J. Engblom, Fiber micro-buckling of continuous glass-fiber reinforced hollow-cored recycled plastic extrusions under long-term flexural loads, Composite Structures, Vol. 56, No. 2, pp. 157–164, (2002).10.1016/S0263-8223(01)00186-6
  14. 14. S. Dutton, D. Kelly, A. Baker, Composite Materials for Aircraft Structures, 2nd Edition, American Institute of Aeronautics and Astronautics, (2004).10.2514/4.861680
  15. 15. H.N Lia, D.S. Lia, G.B. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering, Engineering Structures, Vol. 26, No. 11, pp. 1647-1657, (2004).10.1016/j.engstruct.2004.05.018
  16. 16. A. Guemes, Structural health monitoring by optical fibre distribute sensing, in Proceedings of 5th European Workshop on Structural Health Monitoring 2010, F. Casciati, M. Giordano, Eds, DESTech Publications Inc., pp. 18-24, (2010).
  17. 17. M.D. Rourke, Overview of optical-time domain reflectometry, American Ceramic Society Bulletin, Vol. 59, No. 3, pp. 342-342, (1980).
  18. 18. R. Di Sante, Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications, Sensors, Vol. 15, No. 8, pp. 18666-18713, (2015).
  19. 19. S. Kiran, S. Bhadra, K. Kumar, B. Sharmistha, Piezoelectric Polymer and Paper Substrates: A Review, Sensors, Vol. 18, No. 11, https://doi.org/10.3390/s18113605, (2018).10.3390/s18113605
  20. 20. B. Lin, V. Giurgiutiu, Modeling and testing of PZT and PVDF piezoelectric wafer active sensors, Smart Materials and Structures, Vol. 15, No. 4, pp. 1085-1093, (2006).10.1088/0964-1726/15/4/022
  21. 21. M. Lin, F.K. Chang, Composite Structures with built-in diagnostics, Materials Today, Vol. 2, No. 2, pp. 18-22, (1999).10.1016/S1369-7021(99)80007-8
  22. 22. H.S. Zheng, S.R. Zhu, Z.Q. Li, L.A. Ye, Whole Field Structural Health Monitoring by Polymer-matrix Carbon Fiber Smart Layer, in Manufacturing Processes and Systems, Pts 1-2, Edited by: Liu, XH; Jiang, ZY; Han, JT, Book Series: Advanced Materials Research, Vol. 148-149, pp. 812-817, (2011).
  23. 23. X. Qing, A. Kumar, C. Zhang, I.F. Gonzales, G. Guo, F.K. Chang, A hybrid piezoelectric/fiber optic diagnostic system for structural health monitoring, Smart Materials and Structures, Vol. 14, No. 3, pp. S98-S103, (2005).10.1088/0964-1726/14/3/012
  24. 24. M.B. Lemistre, D.L. Balageas, A Hybrid Electromagnetic Acousto-ultrasonic Method for SHM of Carbon/epoxy Structures, Structural Health Monitoring, Vol. 2, No. 2, pp. 153-160, (2003).10.1177/1475921703002002007
  25. 25. D. Placko, I. Dufour, Eddy-current sensors for nondestructive inspection of graphite composite-materials, in Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, Vols. 1 and 2, pp. 1676-1682, (1992).
  26. 26. G. Tsamasphyros, G. Kanderakise, N. Drivas, I. Prassianakis, Application of the eddy current method and Bragg grating optical sensors for the non destructive testing of bonded composite repairs, in European NDT Days in Prague 2007: NDE for Safety, Proceedings, P. Mazal, Ed., pp. A1-A8 (2007).
  27. 27. J.B. Waldner, Nanocomputers and Swarm Intelligence, Wiley-ISTE, (2008).10.1002/9780470610978
  28. 28. V.K. Varadan, V.V. Varadan, Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems, Smart Materials and Structures, Vol. 9, No. 6, pp. 953-972, (2000).10.1088/0964-1726/9/6/327
  29. 29. * * * Fiber Optic Sensor, 2020, Retrieved 3 June 2020, from https://www.indiamart.com/proddetail/fiber-optic-sensor-21165226512.html.
  30. 30. * * * Piezoelectric Transducer - Buy online in India | Fab.to.Lab., 2020, Retrieved 3 June 2020, from https://www.fabtolab.com/piezoelectric-transducer-soldered.
  31. 31. * * * The difference between inductive proximity, displacement, and eddy-current sensors, 2020, Retrieved 3 June 2020, from https://passive-components.eu/the-difference-between-inductive-proximity-displacement-and-eddy-current-sensors/.
  32. 32. N. Takawane, Global MEMS Sensors for Automotive Market Industry Analysis, Trends, 2020, Retrieved 3 June 2020, from https://pmrpressrelease.com/global-mems-sensors-for-automotive-market-industry-analysis-trends/.
  33. 33. X.L. Qing, H.L. Chan, S.J. Beard, A. Kumar, An Active Diagnostic System for Structural Health Monitoring of Rocket Engines, Journal of Intelligent Material Systems and Structures, Vol. 17, No. 7, pp. 619-628, (2006).10.1177/1045389X06059956
  34. 34. Z. Su, L. Ye, Identification of Damage Using Lamb Waves - From Fundamentals to Applications, Springer, London, (2009).
  35. 35. S.T. Quek, P.S. Tua, J. Jin, Comparison of Plain Piezoceramics and Inter-digital Transducer for Crack Detection in Plates, Journal of Intelligent Material Systems and Structures, Vol. 18, No. 9, pp. 949-961, (2007).10.1177/1045389X06071435
  36. 36. Y. Lu, S.W. Ma, H.F. Zhang, S.H. Cao, Y.Y. Liu, H.Y. Zhang, Damage Index Weighted Delay-and-sum Imaging Method Based on Time Reversed Ultrasonic Lamb Wave for Damage Localization, in 5th International Conference On Systems And Informatics (ICSAI), Book Series: International Conference on Systems and Informatics, pp. 1271-1276, (2018).
  37. 37. C.B. Xu, Z.B. Yang, S.H. Tian, X.F. Chen, Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum, Composite Structures, Vol. 223, doi: 10.1016/j.compstruct.2019.110973, (2019).10.1016/j.compstruct.2019.110973
  38. 38. B.V.S. Sekhar, K. Balasubramaniam, C.V. Krishnamurthy, Structural health monitoring of fiber-reinforced composite plates for low-velocity impact damage using ultrasonic lamb wave tomography, Structural Health Monitoring-an International Journal, Vol. 5, No. 3, pp. 243-253, (2006).10.1177/1475921706067739
  39. 39. V. Giurgiutiu, C.A. Rogers, Recent advancements in the electro-mechanical (E/M) impedance method for structural health monitoring and NDE, in Proceedings of the Conference on Smart Structures and Materials, San Diego, CA, Vol. 3329 (SPIE), pp. 536–547, (1998).10.1117/12.316923
  40. 40. G. Park, H. Sohn, C.R. Farrar, D.J. Inman, Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward, The Shock and Vibration Digest, Vol. 35, No. 6, pp. 451-463, (2003).10.1177/05831024030356001
  41. 41. J.H. Han, K.H. Rew, I. Lee, An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor, Smart Materials & Structures, Vol. 6, No. 5, pp. 549-558, (1997).10.1088/0964-1726/6/5/006
  42. 42. S.V. Sorokin, O.A. Ershova, S.V. Grishina, The active control of vibrations of composite beams by parametric stiffness modulation, European Journal Of Mechanics A-Solids, Vol. 19, No. 5, pp. 873-890, (2000).10.1016/S0997-7538(00)00184-4
  43. 43. D. Sen, S. Nagarajaiah, Data-Driven Approach to Structural Health Monitoring Using Statistical Learning Algorithms, in Mechatronics for Cultural Heritage and Civil Engineering, E. Ottaviano, A. Pelliccio, V. Gattulli, Eds, Springer International Publishing AG, (2018).10.1007/978-3-319-68646-2_13
  44. 44. * * *, Composites and Their Applications, H. Ning, Ed., Intech, Croatia, (2012).
  45. 45. P. Cawley, R.D. Adams, The location of defects in structures from measurements of natural frequencies, The Journal of Strain Analysis for Engineering Design, Vol. 14, No. 2, pp. 49-57, (1979).10.1243/03093247V142049
  46. 46. T. Contursi, A. Messina, E.J. Williams, A Multiple-Damage Location Assurance Criterion Based on Natural Frequency Changes, Journal of Vibration and Control, Vol. 4, No. 5, pp. 619-633, (1998).10.1177/107754639800400505
  47. 47. C.B. Scruby, An introduction to acoustic emission, Journal of Physics E Scientific Instruments, Vol. 20, pp. 946-953, (1987).10.1088/0022-3735/20/8/001
  48. 48. R.A. Silva-Muñoz, R.A. Lopez-Anido, Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors, Composite Structures, Vol. 89, No. 2, pp. 224-234, (2009).10.1016/j.compstruct.2008.07.027
  49. 49. M. Wishaw, D.P. Barton, Comparative vacuum monitoring: a new method of in-situ real-time crack detection and monitoring, in Proceedings of 10th Asia-Pacific Conference On Nondestructive Testing, 17-21 September, Brisbane, Australia, (2001).
  50. 50. G. Wheatley, J. Kollgaard, J. Kristen Register, M. Zaidi, Comparative Vacuum Monitoring (CVM™) as an Alternate Means Of Compliance (AMOC), Insight - Non-Destructive Testing and Condition Monitoring, Vol. 47, No. 3, pp. 153-156, (2005).10.1784/insi.47.3.153.61318
  51. 51. K.L. Schaaf, Composite Materials with Integrated Embedded Sensing Networks, PhD Thesis, University of California, San Diego, (2008).
  52. 52. A. Kovalovs, E. Barkanov, S. Gluhihs, Active twist of model rotor blades with D-spar design, Transport, Vol. 22, No. 1, pp. 38–44, (2007).10.3846/16484142.2007.9638094
  53. 53. S. Nemat-Nasser, T.A. Plaisted, A. Starr, A. Vakil, Multifunctional Materials, in Biomimetics: Biologically Inspired Technologies, Y. Bar Cohen, Ed., CRC Press, (2005).
  54. 54. K. L. Schaaf, P. Rye, S. Nemat-Nasser, Optimization of Sensor Introduction into Laminated Composites, in Proceedings of the 2007 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, (2007).
  55. 55. J.M. Costa, R.J. Black, B. Moslehi, L. Oblea, R. Patel, V. Sotoudeh, E. Abouzeida, V. Quinones, Y. Gowayed, P. Soobramaney, G. Flowers, Fiber-optically sensorized composite wing, in Proceedings of the SPIE - Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, W. Ecke, K.J. Peters, N.G. Meyendorf, T.E. Matikas, Eds., 9-13 March 2014, San Diego California, United States, Vol. 9062, doi: 10.1117/12.2057943, (2014).10.1117/12.2057943
  56. 56. P.C. Cheny, I. Chopra, Induced strain actuation of composite beams and rotor blades with embedded piezoceramic elements, Smart Materials and Structures, Vol. 5, pp. 35–48, (1996).10.1088/0964-1726/5/1/005
DOI: https://doi.org/10.2478/aucts-2020-0001 | Journal eISSN: 2668-6449 | Journal ISSN: 1583-7149
Language: English
Page range: 1 - 11
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Andrei-Daniel Voicu, Anton Hadăr, Daniel Vlăsceanu, Ştefan-Dan Pastramă, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.