2. Cen, L., Melkote, S. N., Effect of robot dynamics on the machining forces in robotic milling. Procedia Manufacturing, Vol. 10, pp. 486-496, (2017).10.1016/j.promfg.2017.07.034
4. Klimchik, A., Ambiehl, A., Garnier, S., Furet, B., Pashkevich, A., Efficiency evaluation of robots in machining applications using industrial performance measure, Robotics and Computer-Integrated Manufacturing, Vol. 48, 12-29. (2017).10.1016/j.rcim.2016.12.005
5. Brunete, A., Gambao, E., Koskinen, J., Heikkilä, T., Kaldestad, K. B., Tyapin, I., ... & Anton, S., Hard material small-batch industrial machining robot, Robotics and Computer-Integrated Manufacturing, Vol. 54, pp. 185-199, (2018).10.1016/j.rcim.2017.11.004
6. Caro, S., Dumas, C., Garnier, S., Furet, B., Workpiece placement optimization for machining operations with a KUKA KR270-2 robot. 2013 IEEE International Conference on Robotics and Automation, IEEE, pp. 2921-2926, (2013).10.1109/ICRA.2013.6630982
7. Racz, G. S., Oleksik, V. S., Breaz, R. E., Incremental forming–CAE/CAM approaches and results, IOP Conference Series: Materials Science and Engineering, Vol. 591, No. 1, pp. 012065. IOP Publishing, (2019).
8. Breaz, R. E., Racz, S. G., Considerations Regarding the Industrial Implementation of Incremental Forming Process. Materials Science Forum, Trans Tech Publications Ltd., Vol. 957, pp. 111-119, (2019).10.4028/www.scientific.net/MSF.957.111
9. Oleksik, V., Influence of geometrical parameters, wall angle and part shape on thickness reduction of single point incremental forming, Procedia Engineering, Vol. 81, pp. 2280-2285, (2014).10.1016/j.proeng.2014.10.321
10. Popp, Mihai., Rusu, Gabriela., Racz, Sever-Gabriel., Popp, Ilie Octavian., Force and thickness prediction with FEA of cranial implants manufactured through SPIF, MATEC Web of Conferences, No. 290, (2019).10.1051/matecconf/201929004008
13. Abele, E., Weigold, M., Rothenbücher, S., Modeling and identification of an industrial robot for machining applications. CIRP annals, Vol. 56, No. 1, pp. 387-390, (2007).10.1016/j.cirp.2007.05.090
14. Wu, Y., Klimchik, A., Caro, S., Furet, B., Pashkevich, A., Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments, Robotics and Computer-Integrated Manufacturing, Vol. 35, pp. 151-168, (2015).10.1016/j.rcim.2015.03.007
16. Crenganiș, M., Bârsan, A., Racz, S. G., Iordache, M. D., SINGLE POINT INCREMENTAL FORMING USING KUKA KR6-2 INDUSTRIAL ROBOT-A DYNAMIC APPROACH, Proceedings in Manufacturing Systems, Vol. 13, No. 3, pp. 133-140, (2018).
17. Taek Oh, Y., Influence of the joint angular characteristics on the accuracy of industrial robots. Industrial Robot: An International Journal, Vol. 38, No. 4, pp. 406-418, (2011).10.1108/01439911111132094
19. Gong, C., Yuan, J., Ni, J., Nongeometric error identification and compensation for robotic system by inverse calibration, International Journal of Machine Tools and Manufacture, Vol. 40, No. 14, pp. 2119-2137, (2000).10.1016/S0890-6955(00)00023-7
20. Ruderman, M., Hoffmann, F., Bertram, T., Modeling and identification of elastic robot joints with hysteresis and backlash, IEEE Transactions on Industrial Electronics, Vol. 56, No. 10, pp. 3840-3847, (2009).10.1109/TIE.2009.2015752
21. Crenganis, M., Csiszar, A., A Dynamic Model for KUKA KR6 in SPIF Processes. Materials Science Forum, Trans Tech Publications Ltd., Vol. 957, pp. 156-166, (2019).10.4028/www.scientific.net/MSF.957.156
22. ISO 9283, Manipulating industrial robots – Performance criteria and related test methods, International Organization for Standardization, Geneva, Switzerland, (1998).