Have a personal or library account? Click to login
Evaluation of the Feasibility of Coffee Variety Classification from Bean Images Using Convolutional Neural Networks Cover

Evaluation of the Feasibility of Coffee Variety Classification from Bean Images Using Convolutional Neural Networks

Open Access
|Feb 2026

References

  1. Abasi, A. K., Makhadmeh, S. N., Alomari, O. A., Tubishat, M., & Mohammed, H. J. (2023). Enhancing Rice Leaf Disease Classification: A Customized Convolutional Neural Network Approach. Sustainability, 15(20), 15039. https://doi.org/10.3390/SU152015039
  2. Bazame, H. C., Molin, J. P., Althoff, D., Martello, M., Bazame, H. C., Molin, J. P., Althoff, D., & Martello, M. (2021). Detection, classification, and mapping of coffee fruits during harvest with computer vision. CEAgr, 183, 106066. https://doi.org/10.1016/J.COMPAG.2021.106066
  3. Buonocore, D., Carratù, M., & Lamberti, M. (2022). Classification of coffee bean varieties based on a deep learning approach. 18th IMEKO TC10 Conference on Measurement for Diagnostic, Optimisation and Control to Saupport Sustainability and Resilience 2022, 14–19. https://doi.org/10.21014/TC10-2022.002
  4. Chang, S. J., & Liu, K. H. (2024). Multiscale Defect Extraction Neural Network for Green Coffee Bean Defects Detection. IEEE Access, 12, 15856–15866. https://doi.org/10.1109/ACCESS.2024.3356596
  5. Coffee: World Markets and Trade. (2024). https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf
  6. Çorbacıoğlu, Ş. K., & Aksel, G. (2023). Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine, 23(4), 195–198. https://doi.org/10.4103/TJEM.TJEM_182_23
  7. Crespo, A., Moncada, C., Crespo, F., & Morocho-Cayamcela, M. E. (2025). An efficient strawberry segmentation model based on Mask R-CNN and TensorRT. Artificial Intelligence in Agriculture, 15(2), 327–337. https://doi.org/10.1016/J.AIIA.2025.01.008
  8. Fu, H., Lu, J., Li, J., Zou, W., Tang, X., Ning, X., & Sun, Y. (2025). Winter Wheat Yield Prediction Using Satellite Remote Sensing Data and Deep Learning Models. Agronomy 15(1), 205. https://doi.org/10.3390/AGRONOMY15010205
  9. Gope, H. L., & Fukai, H. (2020). Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine. International Journal of Computer and Information Engineering, 14(6), 189–196. https://doi.org/10.5281/ZENODO.7085081
  10. He, J., Ren, Y., Li, W., & Fu, W. (2025). YOLOv11-RCDWD: A New Efficient Model for Detecting Maize Leaf Diseases Based on the Improved YOLOv11. Applied Sciences, 15(8), 4535. https://doi.org/10.3390/APP15084535
  11. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Proc. IEEE Comp. Society Conference on Computer Vision and Pattern Recognition, 2016-December, 770–778. https://doi.org/10.1109/CVPR.2016.90
  12. Hendrawan, Y., Rohmatulloh, B., Ilmi, F. I., Fauzy, M. R., Damayanti, R., Al Riza, D. F., Hermanto, M. B., & Sandra. (2021). AlexNet convolutional neural network to classify the types of Indonesian Zimka and Pentoś, Evaluation of the feasibility of coffee variety classification from bean images coffee beans. IOP Conference Series: Earth and Environmental Science, 905(1), 012059. https://doi.org/10.1088/1755-1315/905/1/012059
  13. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/J.COMPAG.2018.02.016
  14. Konieczka, P. P., Aliaño-González, M. J., Ferreiro-González, M., Barbero, G. F., & Palma, M. (2020). Characterization of Arabica and Robusta Coffees by Ion Mobility Sum Spectrum. Sensors, 20(11), 3123. https://doi.org/10.3390/S20113123
  15. Korkmaz, A., Talan, T., Koşunalp, S., & Iliev, T. (2025). Comparison of deep learning models in automatic classification of coffee bean species. PeerJ Computer Science, 11, e2759. https://doi.org/10.7717/PEERJ-CS.2759/SUPP-2
  16. Lachenmeier, W., & Wee Ting Lee, K. (2023). Liberica Coffee Development and Refinement Project in Sarawak Malaysia. Proceedings, 89(1), 15. https://doi.org/10.3390/ICC2023-14849
  17. Lahai, P. M., Aikpokpodion, P. O., Bah, A. M., Lahai, M. T., Meinhardt, L. W., Lim, S., Ahn, E., Zhang, D., & Park, S. (2025). Unveiling the Genetic Diversity and Demographic History of Coffea stenophylla in Sierra Leone Using Genotyping-By-Sequencing. Plants, 14(1), 50. https://doi.org/10.3390/PLANTS14010050
  18. Manikandakumar, M., & Karthikeyan, P. (2022). Weed Classification Using Particle Swarm Optimization and Deep Learning Models. Computer Systems Science and Engineering, 44(1), 913–927. https://doi.org/10.32604/CSSE.2023.025434
  19. Martins, V. D. C., Godoy, R. L. D. O., Gouveâ, A. C. M. S., Santiago, M. C. P. D. A., Borguini, R. G., Braga, E. C. D. O., Pacheco, S., & Nascimento, L. D. S. D. M. Do. (2018). Fraud investigation in commercial coffee by chromatography. Food Quality and Safety, 2(3), 121–133. https://doi.org/10.1093/FQSAFE/FYY017
  20. Pai, P., Amutha, S., Basthikodi, M., Ahamed Shafeeq, B. M., Chaitra, K. M., & Gurpur, A. P. (2025). A twin CNN-based framework for optimized rice leaf disease classification with feature fusion. Journal of Big Data, 12(1), 1–27. https://doi.org/10.1186/s40537-025-01148-z
  21. Robusta or Arabica Object Detection Dataset by aefnattanon. (n.d.). Retrieved May 17, 2025, from https://universe.roboflow.com/aefnattanon/robusta-or-arabica
  22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
  23. Santoso, I., Sholilah, A., Rucitra, A. L., Lu’ayya, N. M., & Choirun, A. (2025). Sustainable Coffee Supply Chain Risk Mitigation Analysis Using the Failure Mode and Effect Analysis. BIO Web of Conferences, 165, 02002. https://doi.org/10.1051/BIOCONF/202516502002
  24. Shara, P. N., Thomy, Z., Anhar, A., Harnelly, E., Ramlan, R. R., Hasan Kreung Kalee, T., & Banda Aceh, D. (2021). Morphological characterization of some Coffea arabica L. varieties in Gayo Experimental Garden Bener Meriah. Journal of Physics: Conference Series, 1882, 12092. https://doi.org/10.1088/1742-6596/1882/1/012092
  25. Tamayo-Monsalve, M. A., Ruiz, E. M., Pulgarin, J. P. V., Ortiz, M. A. B., Arteaga, H. B. A., Rubio, A. M., Alzate-Grisales, J. A., Garzon, D. A., Cano, V. R., Arias, S. O., Osorio, G., & Soto, R. T. (2022). Coffee Maturity Classification Using Convolutional Neural Networks and Transfer Learning. IEEE Access, 10, 42971–42982. https://doi.org/10.1109/ACCESS.2022.3166515
  26. Unal, Y., Taspinar, Y. S., Cinar, I., Kursun, R., & Koklu, M. (2022). Application of Pre-Trained Deep Convolutional Neural Networks for Coffee Beans Species Detection. Food Analytical Methods, 15(12), 3232–3243. https://doi.org/10.1007/s12161-022-02362-8
  27. Vujovic, Z. (2021). Classification Model Evaluation Metrics. International Journal of Advanced Computer Science and Applications, 13(6). https://doi.org/10.14569/IJACSA.2021.0120670
  28. Wu, Q., Liu, H., Zhu, H., Wang, C., Wang, H., Han, Z., Zhao, L., & Liu, F. (2025). YOLO_SSP: An Auto-Algorithm to Detect Mature Soybean Stem Nodes Based on Keypoint Detection. Agronomy, 15(5), 1128. https://doi.org/10.3390/AGRONOMY15051128
  29. Zhang, Q., Ma, D., Yang, Y., Hu, F., Fu, X., Li, G., Zhang, X., Wang, N., Liu, D., Wu, R., Bi, X., Lou, Y., Li, Y., Yu, H., Yan, W., & Li, Y. (2024). Population Genetic Characteristics of the Cultivated Coffea arabica with Whole-Genome Resequencing. Horticulturae, 10(11), 1153. https://doi.org/10.3390/horticulturae10111153
DOI: https://doi.org/10.2478/aucft-2025-0014 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 177 - 188
Submitted on: Jun 25, 2025
|
Accepted on: Sep 20, 2025
|
Published on: Feb 9, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Michał Zimka, Katarzyna Pentoś, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.