Have a personal or library account? Click to login
Kefir Direct-Vat-Set Starter Producing Peptides with Angiotensin-Converting Enzyme Inhibitory and Antioxidant Activities: Formulation Optimization and Stability Evaluation Cover

Kefir Direct-Vat-Set Starter Producing Peptides with Angiotensin-Converting Enzyme Inhibitory and Antioxidant Activities: Formulation Optimization and Stability Evaluation

Open Access
|Sep 2025

References

  1. Amorim, F. G.; Coitinho, L. B.; Dias, A. T.; Friques, A. G. F.; Monteiro, B. L.; Rezende, L. C. D.; Pereira, T. M. C.; Campagnaro, B. P.; De Pauw, E.; Vasquez, E. C.; Quinton, L. (2019). Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chem., 282, 109-119. https://doi.org/10.1016/j.foodchem.2019.01.010
  2. Arslan, S. A review: chemical, microbiological and nutritional characteristics of kefir. CyTA - Journal of Food 2014, 13 (3), 340-345. https://doi.org/10.1080/19476337.2014.981588
  3. Bourrie, B. C. T.; Diether, N.; Dias, R. P.; Nam, S. L.; de la Mata, A. P.; Forgie, A. J.; Gaur, G.; Harynuk, J. J.; Ganzle, M.; Cotter, P. D.; Willing, B. P. (2023). Use of reconstituted kefir consortia to determine the impact of microbial composition on kefir metabolite profiles. Food Res. Int., 173 (Pt 2), 113467. https://doi.org/10.1016/j.foodres.2023.113467
  4. Chen, H.; Chen, S.; Chen, H.; Wu, Y.; Shu, G. (2015). Effects of sugar alcohol and proteins on the survival of Lactobacillus bulgaricus LB6 during freeze drying. Acta Sci. Pol. Technol. Aliment, 14 (2), 117-124. https://doi.org/10.17306/J.AFS.2015.2.13
  5. Chen, H.; Lei, Z.; Hong, H.; Zhai, Y.; Huang, D. (2016). Screening freeze-drying cryoprotectants for Saccharomyces boulardii by Plackett-Burman design. The Annals of the University Dunarea de Jos of Galati, Fascicle VI – Food Technology, 40(2), 83-97.
  6. Chen, H.; Wang, J.; Luo, Q.; Shu, G. (2013). Effect of NaHCO3, MgSO4, sodium Ascorbate, sodium glutamate, phosphate buffer on survival of Lactobacillus bulgaricus during freeze-drying. Adv. J. Food Sci. Technol., 5(6), 771-774. https://doi.org/10.19026/ajfst.5.3166
  7. Chen, L.; Hui, Y.; Gao, T.; Shu, G.; Chen, H. (2021). Function and characterization of novel antioxidant peptides by fermentation with a wild Lactobacillus plantarum 60. LWT-food science and technology, 135, 110162. https://doi.org/10.1016/j.lwt.2020.110162
  8. Czyżak-Runowska, G.; Wójtowski, J. A.; Łęska, B.; Bielińska-Nowak, S.; Pytlewski, J.; Antkowiak, I.; Stanisławski, D. (2022). Lactose Content and Selected Quality Parameters of Sheep Milk Fermented Beverages during Storage. Animals, 12 (22), 3105. https://doi.org/10.3390/ani12223105
  9. Dong, J.; Liu, B.; Jiang, T.; Liu, Y.; Chen, L. (2017). The biofilm hypothesis: The formation mechanism of Tibetan kefir grains. Int. J. Dairy Technol., 71 (S1), 44-50. https://doi.org/10.1111/1471-0307.12473
  10. Fan, X.; Du, L.; Xu, J.; Shi, Z.; Zhang, T.; Jiang, X.; Zeng, X.; Wu, Z.; Pan, D. (2022). Effect of single probiotics Lacticaseibacillus casei CGMCC1.5956 and Levilactobacillus brevis CGMCC1.5954 and their combination on the quality of yogurt as fermented milk. LWT-food science and technology, 163, 113530. https://doi.org/10.1016/j.lwt.2022.113530
  11. Gao, W.; Zhang, L. (2019). Comparative analysis of the microbial community composition between Tibetan kefir grains and milks. Food Res. Int., 116, 137-144. https://doi.org/10.1016/j.foodres.2018.11.056
  12. Gonzalez-Orozco, B. D.; GarciaCano, I.; Jimenez-Flores, R.; Alvarez, V. B. (2022). Invited review: Milk kefir microbiota-Direct and indirect antimicrobial effects. J. Dairy Sci., 105 (5), 3703-3715. https://doi.org/10.3168/jds.2021-21382
  13. Gut, A. M.; Vasiljevic, T.; Yeager, T.; Donkor, O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. J. Funct. Foods, 58, 56-66. https://doi.org/10.1016/j.jff.2019.04.046
  14. Hertzler, S. R.; Clancy, S. M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet Assoc., 103 (5), 582-587. https://doi.org/10.1053/jada.2003.50111
  15. Kabak, B.; Dobson, A. D. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Crit. Rev. Food Sci. Nutr., 51 (3), 248-60. https://doi.org/10.1080/10408390903569640
  16. Kotova, I. B.; Cherdyntseva, T. A.; Netrusov, A. I. (2016). Russian Kefir Grains Microbial Composition and Its Changes during Production Process. Adv. Exp. Med Biol., 932, 93-121. https://doi.org/10.1007/5584_2016_2
  17. Leite, A. M.; Leite, D. C.; Del Aguila, E. M.; Alvares, T. S.; Peixoto, R. S.; Miguel, M. A.; Silva, J. T.; Paschoalin, V. M. (2013). Microbiological and chemical characteristics of Brazilian kefir during fermentation and storage processes. J Dairy Sci, 96 (7), 4149-59. https://doi.org/10.3168/jds.2012-6263
  18. Leite, A. M.; Mayo, B.; Rachid, C. T.; Peixoto, R. S.; Silva, J. T.; Paschoalin, V. M.; Delgado, S. (2012). Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol., 31 (2), 215-21. https://doi.org/10.1016/j.fm.2012.03.011
  19. Moreno Leblanc, A.; Matar, C.; Farnworth, E.; Perdigon, G. (2007). Study of immune cells involved in the antitumor effect of kefir in a murine breast cancer model. J. Dairy Sci., 90 (4), 1920-1928. https://doi.org/10.3168/jds.2006-079
  20. Nambou, K.; Gao, C.; Zhou, F.; Guo, B.; Ai, L.; Wu, Z. (2014). A novel approach of direct formulation of defined starter cultures for different kefir-like beverage production. Int. Dairy J., 34 (2), 237-246. https://doi.org/10.1016/j.idairyj.2013.03.012
  21. Nejati, F.; Junne, S.; Neubauer, P. (2020). A Big World in Small Grain: A Review of Natural Milk Kefir Starters. Microorganisms, 8 (2), 192. https://doi.org/10.3390/microorganisms8020192
  22. Quintieri, L.; Fanelli, F.; Monaci, L.; Fusco, V. (2024). Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods, 13 (4), 601. https://doi.org/10.3390/foods13040601
  23. Samtiya, M.; Samtiya, S.; Badgujar, P. C.; Puniya, A. K.; Dhewa, T.; Aluko, R. E. (2022). Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients, 14 (15),3001; https://doi.org/10.3390/nu14153001
  24. Shi, X.; Chen, H.; Li, Y.; Huang, J.; He, Y. (2018). Effects of kefir grains on fermentation and bioactivity of goat milk. Acta Universitatis Cibiniensis. Series E: Food Technology, 22(1), 43-50. https://doi.org/10.2478/aucft-2018-0005
  25. Shori, A. B.; Aljohani, G. S.; Al-zahrani, A. J.; Alsulbi, O. S.; Baba, A. S. (2022). Viability of probiotics and antioxidant activity of cashew milk-based yogurt fermented with selected strains of probiotic Lactobacillus spp. LWT-food science and technology, 153, 112482. https://doi.org/10.1016/j.lwt.2021.112482
  26. Shu, G.; Huang, J.; Chen, L.; Lei, N.; Chen, H. (2018a). Characterization of Goat Milk Hydrolyzed by Cell Envelope Proteinases from Lactobacillus plantarum LP69: Proteolytic System Optimization, Bioactivity, and Storage Stability Evaluation. Molecules, 23 (6), 1317. https://doi.org/10.3390/molecules23061317
  27. Shu, G.; Ma, L.; Chen, L.; Guo, M.; Guo, Y.; Chen, H. (2020). Goat milk Kefir with ACE inhibitory activity: Preparation and storage stability evaluation. J. Food Process. Preserv., 44 (5),14417. https://doi.org/110.1111/jfpp.14417
  28. Shu, G.; Niu, J.; Wan, H.; Chen, H. (2016). Investigations on the capacity of lactic acid bacteria to produce ace inhibitory peptides. The Annals of the University Dunarea de Jos of Galati, Fascicle VI – Food Technology, 40(1), 43-57.
  29. Shu, G.; Shi, X.; Chen, L.; Kou, J.; Meng, J.; Chen, H. (2018b). Antioxidant Peptides from Goat Milk Fermented by Lactobacillus casei L61: Preparation, Optimization, and Stability Evaluation in Simulated Gastrointestinal Fluid. Nutrients, 10 (6), 797. https://doi.org/10.3390/nu10060797
  30. Vinderola, G.; Perdigon, G.; Duarte, J.; Farnworth, E.; Matar, C. (2006). Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation. J. Dairy Res., 73 (4), 472-479. https://doi.org/10.1017/S002202990600197X
  31. Walsh, A. M.; Crispie, F.; Kilcawley, K.; O’Sullivan, O.; O’Sullivan, M. G.; Claesson, M. J.; Cotter, P. D. (2016). Microbial Succession and Flavor Production in the Fermented Dairy Beverage Kefir. mSystems, 1 (5), e00052-16. https://doi.org/10.1128/mSystems.00052-16
  32. Walsh, L. H.; Coakley, M.; Walsh, A. M.; Crispie, F.; O’Toole, P. W.; Cotter, P. D. (2023). Analysis of the milk kefir pan-metagenome reveals four community types, core species, and associated metabolic pathways. iScience, 26 (10), 108004. https://doi.org/10.1016/j.isci.2023.108004
  33. Wang, H.; Guo, M. (2023). Microbiological profiles, physiochemical properties and volatile compounds of goat milk kefir fermented by reconstituted kefir grains. LWT-food science and technology, 183, 114943. https://doi.org/10.1016/j.lwt.2023.114943
  34. Wang, X.; Li, W.; Mahsa, G. C.; Zhang, C.; Ma, K.; Rui, X.; Li, W. (2023). Co-cultivation effects of Lactobacillus helveticus SNA12 and Kluveromyces marxiensis GY1 on the probiotic properties, flavor, and digestion in fermented milk. Food Res. Int., 169, 112843. https://doi.org/10.1016/j.foodres.2023.112843
  35. Zhang, Z.; Guo, S.; Wu, T.; Yang, Y.; Yu, X.; Yao, S. (2022). Inoculum size of co-fermentative culture affects the sensory quality and volatile metabolome of fermented milk over storage. J Dairy Sci, 105 (7), 5654-5668. https://doi.org/10.3168/jds.2021-21733
  36. Zhou, J.-z.; Liu, X.-l.; Huang, K.-h.; Dong, M.-s.; Jiang, H. (2007). Application of the Mixture Design to Design the Formulation of Pure Cultures in Tibetan kefir. Agric. Sci. China, 6 (11), 1383-1389. https://doi.org/10.1016/S1671-2927(07)60187-4
  37. Zhu, X.; Wen, J.; Wang, J. (2020). Effect of environmental temperature and humidity on milk production and milk composition of Guanzhong dairy goats. Vet Anim. Sci., 9, 100121. https://doi.org/10.1016/j.vas.2020.100121
DOI: https://doi.org/10.2478/aucft-2025-0006 | Journal eISSN: 2344-150X | Journal ISSN: 2344-1496
Language: English
Page range: 77 - 88
Submitted on: Feb 6, 2025
Accepted on: May 20, 2025
Published on: Sep 22, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Lihao Xu, Guowei Shu, Jianhao Nan, Zhenquan Huo, Xiaoyu Shi, Meng Zhang, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.