Ahmad, I., Khalique, A., Junaid, M., Shahid, M.Q., Imran, M. & Rashid, A.A. (2020). Effect of polyphenol from apple peel extract on the survival of probiotics in yoghurt ice cream. Int. J. Food Sci. Tech. 55, 2580-2588. https://doi.org/10.1111/jfpp.16748.
Aleman, R.S. & Yadav, A. (2024). Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods. Appl. Microbiol. 4(1), 47-69. https://doi.org/10.3390/applmicrobiol4010004.
Algaithi, M., Mudgil, P., Hamdi, M., Redha, A., Ramachandran, T., Hamed, F. & Maqsood, S. (2022). Lactobacillus reuteri-fortified camel milk infant formula: Effects of encapsulation, in vitro digestion, and storage conditions on probiotic cell viability and physicochemical characteristics of infant formula. J. Dairy Sci. 105(11), 8621-8637. https://doi.org/10.3168/jds.2022-22008.
Amaretti, A., Di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M. & Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl. Microbiol. Biotechnol. 97, 809. https://doi.org/10.1007/s00253-012-4241-7.
Aprea, G., Del Matto, I., Tucci, P., Marino, L., Scattolini, S. & Ross, F. (2023). In Vivo Functional Properties of Dairy Bacteria. Microorganisms. 11 (7), 1787. https://doi.org/10.3390/microorganisms11071787.
Athanasaki, Ch., Zacharodimos, N., Tsitsou, S., Bothou, D.-L., Vitsou-Anastasiou, S., Papadopoulou, O.S. & Papakonstantinou, E. (2023). Short-Term Effects of a Snack Including Fruit Juice Enriched with Vitamin D3, n-3 Fatty Acids, and Probiotics on Energy Intake and Satiety in Normal-Weight and Overweight Individuals. Proceedings. 91, 104. https://doi.org/10.3390/metabo13070791.
Aziz, F.N., Utami, T., Suroto, D.A., Yanti, R. & Rahayu, E.S. (2023). Fermentation of pineapple juice with Lactiplantibacillus plantarum subsp. plantarum Dad-13: Sensory and microbiological characteristics. Czech J. Food Sci. 41(3), 221-229. https://doi.org/10.17221/243/2022-CJFS.
Balasubramanian, R., Schneider, E., Gunnigle, E., Cotter, P.D. & Cryan, J.F. (2024). Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci. Biobehav. Rev. 158, 105562. https://doi.org/10.1016/j.neubiorev.2024.105562.
Ballini, A., Charitos, I.A., Cantore, S., Topi, S., Bottalico, L. & Santacroce, L. (2023). About Functional Foods: The Probiotics and Prebiotics State of Art. Antibiotics. 12(4), 635. https://doi.org/10.3390/antibiotics12040635.
Barer, M.R. (2015). Chapter 10 - Bacterial Growth, Culturability and Viability. In Y.-W. Tang, M. Sussman, D. Liu, I. Poxton & J. Schwartzman, (Eds.), Molecular Medical Microbiology, 2nd ed. Academic Press: Boston, MA, USA.
Bell, V., Ferrão, J., Pimentel, L., Pintado, M. & Fernandes, T. (2018). One Health, Fermented Foods, and Gut Microbiota. Foods. 7(12), 195. https://doi.org/10.3390/foods7120195.
Bińkowska, W., Szpicer, A., Wojtasik-Kalinowska, I. & Półtorak, A. (2024). Innovative Methods of Encapsulation and Enrichment of Cereal-Based Pasta Products with Biofunctional Compounds. Appl. Sci. 14, 1442. https://doi.org/10.3390/app14041442.
Blaiotta, G., De Sena, M., De Girolamo, F., Aponte, M. & Romano, R. (2023). Probiotic bacilli incorporation in foods: is really so easy? Food Microbiol. 115, 104342. https://doi.org/10.1016/j.fm.2023.104342.
Burca-Busaga, C.G., Betoret, N., Seguí, L., Betoret, E. & Barrera, C. (2020). Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization. Microorganisms. 8(8), 1095. https://doi.org/10.3390/microorganisms8081095.
Bustos, A.Y., Taranto, M.P., Gerez, C.L., Agriopoulou, S., Smaoui, S., Varzakas, T. & Enshasy, H.A.E. (2024). Recent Advances in the Understanding of Stress Resistance Mechanisms in Probiotics: Relevance for the Design of Functional Food Systems. Probiotics Antimicrob. Proteins. 0123456789. https://doi.org/10.1007/s12602-024-10273-9.
Chelladhurai, K., Ayyash, M., Turner, M.S. & Kamal-Eldin, A. (2023). Lactobacillus helveticus: Health effects, current applications, and future trends in dairy fermentation. Trends Food Sci. Technol. 136, 159-168. https://doi.org/10.1016/j.tifs.2023.04.013.
Colautti, A., Arnoldi, M., Comi, G. & Iacumin, L. (2022). Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Food Microbiol. 103, 103934. https://doi.org/10.1016/j.fm.2021.103934.
Cuamatzin-García, L., Rodríguez-Rugarcía, P., Girgis El-Kassis, E., Galicia, G., de Lourdes Meza-Jiménez, M., del Rocío Baños-Lara, M., Salatiel Zaragoza-Maldonado, D. & Pérez-Armendáriz, B. (2022). Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms. 10(6), 1151. https://doi.org/10.3390/microorganisms10061151.
da Silva Vale, A., Côgo Venturim, B., Ferreira da Silva Rocha, A.R., Prado Martin, J.G., Leal Maske, B., Balla, G., De Dea Lindner, J., Soccol, C.R. & de Melo Pereira, V.G. (2023). Exploring Microbial Diversity of Non-Dairy Fermented Beverages with a Focus on Functional Probiotic Microorganisms. Fermentation. 9(6), 496. https://doi.org/10.3390/fermentation9060496.
Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T. & Apostolopoulos, V. (2019). Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas. 119, 25-38. https://doi.org/10.1016/j.maturitas.2018.11.002.
Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S.J., Berenjian, A. & Ghasemi, Y. (2019). Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 8, 92. https://doi.org/10.3390/foods8030092.
de Souza, M., Drunkler, D.A. & Colla, E. (2024). Probiotic Functional Yogurt: Challenges and Opportunities. Fermentation. 10(1), 6. https://doi.org/10.3390/fermentation10010006.
Demirci, T., Negis, H.I.O., Orac, A., Goktepe, C.K., Atik, D.S., Aktas, K., Demirci, S., Sert, D. & Akın, N. (2019). Immature wheat grain as a potential prebiotic ingredient in set- type yoghurts: impact on antioxidative, textural properties and survival of different probiotics. J. Food Sci. Technol. 56(12), 5474-5483. https://doi.org/10.1007/s13197-019-04019-7.
Dimidi, E., Cox, S.R., Rossi, M. & Whelan, K. (2019). Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients. 11(8), 1806. https://doi.org/10.3390/nu11081806.
Divakar, D.D. & Singh Nigam, P. (2022). Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut–Brain Signaling. Microorganisms. 10(9), 1687. https://doi.org/10.3390/microorganisms10091687.
Duman, D. & Karadag, A. (2021). Inulin added electrospun composite nanofibres by electrospinning for the encapsulation of probiotics: characterisation and assessment of viability during storage and simulated gastrointestinal digestion. Int. J. Food Sci. Tech. 56, 927-935. https://doi.org/10.1111/ijfs.14744.
FAO/WHO Food and Agricultural Organization of the United Nations and World Health Organization. (2002). Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations [online], ftp://ftp.fao.org/es/esn/food/wgreport2.pdf.
Feng, T. & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes. 12(1), 1801944. https://doi.org/10.1080/19490976.2020.1801944.
Fenster, K., Freeburg, B., Hollard, C., Wong, C., Laursen, R.R. & Ouwehand, A.C. (2019). The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms. 7(3), 83. https://doi.org/10.3390/microorganisms7030083.
Fiocco, D., Longo, A., Arena, M.P., Russo, P., Spano, G. & Capozzi, V. (2020). How probiotics face food stress: They get by with a little help. Crit. Rev. Food Sci. Nutr. 60(9), 1552-1580. https://doi.org/10.1080/10408398.2019.1580673.
Fortin, M.-H., Champagne, C.P., St-Gelais, D., Britten, M., Fustier, P. & Lacroix, M. (2011). Effect of time of inoculation, starter addition, oxygen level and salting on the viability of probiotic cultures during Cheddar cheese production. Int. Dairy J. 21, 75e82. https://doi.org/10.1016/j.idairyj.2010.09.007.
Gangwar, A.S., Bhardwaj, A. & Sharma, V. (2018). Fermentation of tender coconut water by probiotic bacterial Bacillus coagulans. Int. J. Food Stud. 7, 100-110. https://doi.org/10.7455/ijfs/7.1.2018.a9.
Gao, X., Kong, J., Zhu, H., Mao, B., Cui, S. & Zhao, J. (2022). Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J. Appl. Microbiol. 132, 802-821. https://doi.org/10.1111/jam.15251.
Guarner, F., Sanders, M.E., Szajewska, H., Cohen, H., Eliakim, R., Herrera, C., Karakan, T., Merenstein, D., Piscoya, A., Ramakrishna, B. & Salminen, S. (2023). Probiotics and prebiotics. World Gastroenterology Organisation Global Guidelines.
Guo, Q., Cui, B., Yuan, C., Guo, L., Li, Z., Chai, Q., Wang, N., Gänzle, M. & Zhao, M. (2024). Fabrication of dry S/O/W microcapsule and its probiotic protection against different stresses. J. Sci. Food Agric. 104, 2842-2850. https://doi.org/10.1002/jsfa.13175.
Haghani, S., Milad Hadidi, M., Pouramin, S., Adinepour, F., Hasiri, Z., Moreno, A., Paulo E.S., Munekata, P.E.S. & Lorenzo, J.M. (2021). Application of Cornelian Cherry (Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants. 10, 1777. https://doi.org/10.3390/antiox10111777.
Hakim, B.N.A., Xuan, N.J. & Hazwani Oslan, S.N. (2023). A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods. 12(15), 2850. https://doi.org/10.3390/foods12152850.
Hinestroza-Córdoba, L.I., Betoret, E., Seguí, L., Barrera, C. & Betore, N. (2021). Fermentation of Lulo Juice with Lactobacillus reuteri CECT 925. Properties and Effect of High Homogenization Pressures on Resistance to In Vitro Gastrointestinal Digestion. Appl. Sci. 11, 10909. https://doi.org/10.3390/app112210909.
Hossain, M.N., Ranadheera, C.S., Fang, Z. & Ajlouni, S. (2021). Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. J. Food Sci. 86, 1629-1641. https://doi.org/10.1111/1750-3841.15695.
Huang, X., Gänzle, M., Zhang, H., Zhao, M., Fang, Y. & Nishinari, K. (2021). Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. J. Sci. Food Agric. 101, 726-734. https://doi.org/10.1002/jsfa.10685.
Iqbal, R., Liaqat, A., Yasmin, I., Ahsan, S., Chughtai, M.F.J., Tanweer, S., Mehmood, T., Tehseen, S., Khan, W.A., Nadeem, M., Tahir, A.B. & Khaliq, A. (2022). Double layered encapsulation to immobilize Bifidobacterium bifidum ATCC 35914 in polysaccharide-protein matrices and their viability in set type yoghurt. J. Food Process Preserv. 46, e16748. https://doi.org/10.1111/jfpp.16748.
Jalili, M., Nazari, M. & Magkos, F. (2023). Fermented Foods in the Management of Obesity: Mechanisms of Action and Future Challenges. Int. J. Mol. Sci. 24 (3), 2665. https://doi.org/10.3390/ijms24032665.
Jeon, H.J., You, S.-h., Kwon, M., Shin, M., Kim, S.-K. & Jung, Y.H. (2023). Multilayer coatings containing red ginseng dietary fibre improve the survivability and stability of probiotic bacteria. Int. J. Food Sci. Tech. 58, 1497-1505. https://doi.org/10.1111/ijfs.16319.
Kandasamy, S. & Naveen, R. (2022). A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. J. Food Process. Eng. 45, e14059. https://doi.org/10.1111/jfpe.14059.
Karaca, O.B., Saydam, I.B. & Güven, M. (2019). Physical, chemical, and sensory attributes of low‐fat, full‐fat, and fat‐free probiotic set yogurts fortified with fiber‐rich persimmon and apple powders. J. Food Process. Preserv. 43, e13926. https://doi.org/10.1111/jfpp.13926.
Karimi, R., Mortazavian, A.M. & Da Cruz, A.G. (2011). Viability of probiotic microorganisms in cheese during production and storage: a review. Dairy Sci. & Technol. 91, 283-308. https://doi.org/10.1007/s13594-011-0005-x.
Kaur, H., Kaur, G. & Azmal Ali, S. (2022). Dairy-Based Probiotic-Fermented Functional Foods: An Update on Their Health-Promoting Properties. Fermentation. 8(9), 425. https://doi.org/10.3390/fermentation8090425.
Khan, F.M., Morya, S. & Kumar Chattu, V. (2021). Probiotics as a boon in Food diligence: Emphasizing the therapeutic roles of Probiotic beverages on consumers’ health. J. Appl. Nat. Sci. 13, 700-714. https://doi.org/10.31018/jans.v13i2.2683.
Khullar, G., Karami, Z. & Prakitchaiwattana, C. (2024). Development of microencapsulated dried Bacillus sp. 63-11 with enhanced shelf stability and bioactivity for use as a food supplement. Int. J. Food Sci. Tech. 59, 1291-1298. https://doi.org/10.1111/ijfs.16853.
Kiepś, J. & Dembczyński, J. (2022). Current Trends in the Production of Probiotic Formulations. Foods. 11(15), 2330. https://doi.org/10.3390/foods11152330.
Kim, M., Nam, D.-G., Im, P., Choe, J.-S. & Choi, A.-J. (2020). Optimal conditions for the encapsulation of Weissella cibaria JW15 using alginate and chicory root and evaluation of capsule stability in a simulated gastrointestinal system. J. Food Sci. 85(2), 394-403. https://doi.org/10.1111/1750-3841.15013.
Koirala, S. & Kumar, A. (2021). Anal Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods. 3, 100013. https://doi.org/10.1016/j.fufo.2021.100013.
Kondrotiene, K., Zavistanaviciute, P., Aksomaitiene, J., Novoslavskij, A. & Malakauskas, M. (2024). Lactococcus lactis in Dairy Fermentation—Health-Promoting and Probiotic Properties. Fermentation. 10(1), 16. https://doi.org/10.3390/fermentation10010016.
Kouamé, K.J.E.-E., Massounga Bora, A.F., Li, X., Sun, Y., Tian, S., Hussain, M., Liu, L. & Coulibaly, I. (2023). Development and characterization of probiotic (co)encapsulates in biopolymeric matrices and evaluation of survival in amillet yogurt formulation. J. Food Sci. 88, 9-27. https://doi.org/10.1111/1750-3841.16375.
Koumpouli, D., Koumpouli, V. & Koutelidakis, A.E. (2024). Functional Foods, Gut Microbiome and Association with Obesity and Metabolic Syndrome: A Literature Review. Appl. Sci. 14(13), 5578. https://doi.org/10.3390/app14135578.
Kowalska, E., Ziarno, M., Ekielski, A. & Żelaziński, T. (2022). Materials Used for the Microencapsulation of Probiotic Bacteria in the Food Industry. Molecules. 27, 3321. https://doi.org/10.3390/molecules27103321.
Lai, G., Addis, M., Caredda, M., Fiori, M., Dedola, A.S., Furesi, S. & Pes, M. (2024). Development and Characterization of a Functional Ice Cream from Sheep Milk Enriched with Microparticulated Whey Proteins, Inulin, Omega-3 Fatty Acids, and Bifidobacterium BB-12®. Dairy. 5, 134-152. https://doi.org/10.3390/dairy5010011.
Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M.W., Rehman, A., Riaz, T., Aadil, R.M., Khan, I.M., Özogul, F., Rocha, J.M., Esatbeyoglu, T. & Korma, S.A. (2023). Probiotics: mechanism of action, health benefits and their application in food industries. Front. Microbiol. 14, 1216674. https://doi.org/10.3389/fmicb.2023.1216674.
Lee, S.H., Siak-Wei, D., Tay, P.K.R., Chen, D., Chow, P.S., Yang, Y.Y., Liu, S.Q. & Heng, D. (2024). A formulation platform for incorporating live probiotics into different food matrices. J. Food Eng. 378, 112113. https://doi.org/10.1016/j.jfoodeng.2024.112113.
Li, L., Chen, J., Zhou, S., Ren, G. & Duan, X. (2021). Quality evaluation of probiotics enriched Chinese yam snacks produced using infrared-assisted spouted bed drying. J. Food Process. Preserv. 45, e15358. https://doi.org/10.1111/jfpp.15358.
Lima, W.D.L., Monteiro, S.S. & de Bittencourt Pasquali, M.A. (2022). Study of Fermentation Strategies by Lactobacillus gasseri for the Production of Probiotic Food Using Passion Fruit Juice Combined with Green Tea as Raw Material. Foods. 11(10), 1471. https://doi.org/10.3390/foods11101471.
Liu, J., Liu, F., Ren, T., Wang, J., Yang, M., Yao, Y. & Chen, H. (2021). Fabrication of fish gelatin / sodium alginate double network gels for encapsulation of probiotics. J. Sci. Food Agric. 101, 4398-4408. https://doi.org/10.1002/jsfa.11081.
Ma, L., Shang, Y., Zhu, Y., Zhang, X., E, J., Zhao, L. & Wang, J. (2020). Study on microencapsulation of Lactobacillus plantarum LIP-1 by emulsification method. J. Food Process. Eng. 43, e13437. https://doi.org/10.1111/jfpe.13437.
Ma, W., Li, Y., Kang, W., Han, Y., Yin, B., Yang, R., Tang, R., Pan, L., Wang, J., Li; W., Huangy, Y. & Gu, R. (2024). Synergistic combination of cryoprotectants improved freeze-dried survival rate and viable counts of Lactiplantibacillus plantarum. Int. J. Dairy Tech. 77(2), 348-357. https://doi.org/10.1111/1471-0307.13035.
Maciejewska, P., Piechocka, J., Szulc, P., Cielecka-Piontek, J. & Szymanowska, D. (2019). Life factory engineers – probiotic microorganisms in JOY DAY – forest fruits drink. J. Res. Appl. Agr. Eng. 64(4), 25-30.
Mahmud, S., Khan, S., Khan, M.R., Sarker, J.I.U.K., Hasan, G.M.M.A. & Ahmed, M. (2022). Viability and stability of microencapsulated probiotic bacteria by freeze-drying under in vitro gastrointestinal conditions. J. Food Process. Preserv. 46, e17123. https://doi.org/10.1111/jfpp.17123.
Maia, M.S., Domingos, M.M. & de São José, J.F.B. (2023). Viability of Probiotic Microorganisms and the Effect of Their Addition to Fruit and Vegetable Juices. Microorganisms. 11, 1335. https://doi.org/10.3390/microorganisms11051335.
Manzoor Shah, A., Tarfeen, N., Mohamed, H. & Song, Y. (2023). Fermented Foods: Their Health-Promoting Components and Potential Effects on Gut Microbiota. Fermentation. 9(2), 118. https://doi.org/10.3390/fermentation9020118.
Marinho, J.F.U., da Silva, M.P., Mazzocato, M.C., Tulini, F.L. & Favaro-Trindade, C.S. (2019). Probiotic and Synbiotic Sorbets Produced with Jussara (Euterpe edulis) Pulp: Evaluation Throughout the Storage Period and Effect of the Matrix on Probiotics Exposed to Simulated Gastrointestinal Fluids. Probiotics & Antimicro. Prot. 11, 264-272. https://doi.org/10.1007/s12602-017-9346-y.
Markowiak, P. & Śliżewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 9(9), 1021. https://doi.org/10.3390/nu9091021.
Matouskova, P., Hoova, J., Rysavka, P. & Marova, I. (2021). Stress Effect of Food Matrices on Viability of Probiotic Cells during Model Digestion. Microorganisms. 9(8), 1625. https://doi.org/10.3390/microorganisms9081625.
Meena, K.K., Taneja, N.T., Ojha, A. & Meen, S. (2023). Application of spray-drying and freeze-drying for microencapsulation of lactic acid bacteria: A review. Ann. Phytomedicine. 12(1), 706-716. http://dx.doi.org/10.54085/ap.2023.12.1.76.
Meenu, M., Kaur, S., Kaur, M., Mradula, M., Khandare, K., Xu, B. & Pati, P.K. (2024). The golden era of fruit juices-based probiotic beverages: Recent advancements and future possibilities. Process Biochem. 142, 113-135. https://doi.org/10.1016/j.procbio.2024.04.001.
Misra, S., Mohanty, D. & Mohapatra, S. (2019). Applications of Probiotics as a Functional Ingredient in Food and Gut Health. J. Food Nutr. Res. 7(3), 213-223. https://doi.org/10.12691/jfnr-7-3-6.
Mojikon, F.D., Kasimin, M.E., Molujin, A.M., Gansau, J.A. & Jawan, R. (2022). Probiotication of Nutritious Fruit and Vegetable Juices: An Alternative to Dairy-Based Probiotic Functional Products. Nutrients. 14(17), 3457. https://doi.org/10.3390/nu14173457.
Mota de Carvalho, N., Costa, E.M., Silva, S., Pimentel, L., Fernandes, T.H. & Estevez Pintado, M. (2018). Fermented Foods and Beverages in Human Diet and Their Influence on Gut Microbiota and Health. Fermentation. 4(4), 90. https://doi.org/10.3390/fermentation4040090.
Muncey, L. & Hekmat, S. (2021). Development of Probiotic Almond Beverage Using Lacticaseibacillus rhamnosus GR-1 Fortified with Short-Chain and Long-Chain Inulin Fibre. Fermentation. 7, 90. https://doi.org/10.3390/fermentation7020090.
Najgebauer-Lejko, D., Liszka, K., Tabaszewska, M. & Domagała, J. (2021). Probiotic Yoghurts with Sea Buckthorn, Elderberry, and Sloe Fruit Purees. Molecules. 26(8), 2345. https://doi.org/10.3390/molecules26082345.
Naklong, K., Therdtatha, P., Sumonsiri, N., Leksawasdi, N., Techapun, Ch., Rachtanapun, P., Taesuwan, S., Nunta, R. & Khemacheewakul, J. (2023). Microencapsulation of Bifidobacterium breve to Enhance Microbial Cell Viability in Green Soybean Yogurt. Fermentation. 9, 296. https://doi.org/10.3390/fermentation9030296.
Nami, B., Tofighi, M., Molaveisi, M., Mahmoodan, A. & Dehnad, D. (2023). Gelatin-maltodextrin microcapsules as carriers of vitamin D3 improve textural properties of synbiotic yogurt and extend its probiotics survival. Food Biosci. 53, 102524. https://doi.org/10.1016/j.fbio.2023.102524.
Nematollahi, A., Sohrabvandi, S., Mortazavian, A.M. & Jazaeri, S. (2016). Viability of probiotic bacteria and some chemical and sensory characteristics in cornelian cherry juice during cold storage. Electronic J. Biotech. 21, 49-53. https://doi.org/10.1016/j.ejbt.2016.03.001.
Nguyen, T.-T., Nguyen, P.-T., Nguyen, T.-T.-U., Nguyen, T.-B.-N., Bui, N.-B. & Nguyen, H.-T. (2022). Efficacy of the incorporation between self-encapsulation and cryoprotectants on improving the freeze-dried survival of probiotic bacteria. J. Appl. Microbiol. 132, 3217-3225. https://doi.org/10.1111/jam.15473.
Nuylert, A., Jampaphaeng, K., Tani, A. & Maneerat, S. (2022). Survival and stability of Lactobacillus plantarum KJ03 as a freeze-dried autochthonous starter culture for application in stink bean fermentation (Sataw-Dong). J. Food Process. Preserv. 46, e16367. https://doi.org/10.1111/jfpp.16367.
Palazzolli Silva, M., Grecco Farsoni, E., Gobato, C.F., Thomazini, M. & Favaro-Trindade, C.S. (2022). Simultaneous encapsulation of probiotic and guarana ´ peel extract for development of functional peanut butter. Food Control. 138, 109050. https://doi.org/10.1016/j.foodcont.2022.109050.
Pereira, E.P.R., da Graça, J.S., Ferreira, B.M., Balthazar, C.B., Xavier-Santos, D., Bezerril, F.F., Magnani, M. & Sant’Ana, A.S. (2024). What are the main obstacles to turning foods healthier through probiotics incorporation? a review of functionalization of foods by probiotics and bioactive metabolites. Food Res. Int. 176, 113785. https://doi.org/10.1016/j.foodres.2023.113785.
Pires, A.F., Marnotes, N.G., Bella, A., Viegas, J., Gomes, D.M., Henriques, M.H.F. & Pereira, C.J.D. (2021). Use of ultrafiltrated cow’s whey for the production of whey cheese with Kefir or probiotics. J. Sci. Food Agric. 101, 555-563. https://doi.org/10.1002/jsfa.10667.
Plaza-Diaz, J., Ruiz-Ojeda, F.J., Gil-Campos, M. & Gil, A. (2029). Mechanisms of Action of Probiotics. American Soc. Nutr. 10. S49-S66. https://doi.org/10.1093/advances/nmy063.
Puntillo, M., Segli, F., Champagne, C.P., Raymond, Y. & Vinderola, G. (2022). Functional Microbes and Their Incorporation into Foods and Food Supplements: Probiotics and Postbiotics. Annu Rev. Food Sci. Technol. 13, 385-407. https://doi.org/10.1146/annurev-food-052720-011545.
Rajab, S., Tabandeh, F., Shahraky, M.K. & Alahyaribeik, S. (2020). The effect of Lactobacillus cell size on its probiotic characteristics. Anaerobe. 62, 102103. https://doi.org/10.1016/j.anaerobe.2019.102103.
Rajagukguk, Y.V., Arnold, M., Sidor, A., Kulczyński, B., Brzozowska, A., Schmidt, M. & Gramza-Michałowska, A. (2022). Antioxidant Activity, Probiotic Survivability, and Sensory Properties of a Phenolic-Rich Pulse Snack Bar Enriched with Lactiplantibacillus plantarum. Foods. 11, 309. https://doi.org/10.3390/foods11030309.
Santos Monteiro, S., Silva Beserra, Y.A., Lisboa Oliveira, H.M. & de Bittencourt Pasquali, M.A. (2020). Production of Probiotic Passion Fruit (Passiflora edulis Sims f. flavicarpa Deg.) Drink Using Lactobacillus reuteri and Microencapsulation via Spray Drying. Foods. 9, 335. https://doi.org/10.3390/foods9030335.
Sarquis, M.A., Siroli, L., Modesto, M., Patrignani, F., Lanciotti, R., Mattarelli, P., Reinheimer, J. & Burns, P. (2019). Novel bifidobacteria strains isolated from nonconventional sources. Technological, antimicrobial and biological characterization for their use as probiotics. J. Appl. Microbiol. 127, 1207-1218. https://doi.org/10.1111/jam.14367.
Savo Sardaro, M.L., Zaini, S. & Ryan Amato, K. (2023). A Model for Probiotic Fermented Food Production. Appl. Sci. 13(20), 11123. https://doi.org/10.3390/app132011123.
Scheler, O., Postek, W. & Garstecki, P. (2019). Recent developments of microfluidics as a tool for biotechnology and microbiology. Curr. Opin. Biotechnol. 55, 60-67. https://doi.org/10.1016/j.copbio.2018.08.004.
Schittler, L., Perin, L.M., de Lima Marques, J., Lando, V., Todorov, S.D., Nero, L.A. & da Silva, W.P. (2019). Isolation of Enterococcus faecium, characterization of its antimicrobial metabolites and viability in probiotic Minas Frescal cheese. J. Food Sci. Technol. 56(11), 5128-5137. https://doi.org/10.1007/s13197-019-03985-2.
Siciliano, R.A., Reale, A., Mazzeo, M.F., Morandi, S., Silvetti, T. & Brasca, M. (2021). Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients. 13(4), 1225. https://doi.org/10.3390/nu13041225.
Siddiqui, S.A., Erol, Z., Rugji, J., Taşçı, F., Ahu Kahraman, H., Toppi, V., Musa, L., Di Giacinto, G., Bahmid, N.A., Mehdizadeh, M. & Castro-Muñoz, R. (2023). An overview of fermentation in the food industry - looking back from a new perspective. Bioresour. Bioprocess. 10, 85. https://doi.org/10.1186/s40643-023-00702-y.
Sielatycka, K., Śliwa-Dominiak, J., Radaczyńska, M., Juzwa, W., Kaczmarczyk, M., Marlicz, W., Skonieczna-Żydecka, K. & Łoniewski, I. (2023). Dynamics of Active Fluorescent Units (AFU) and Water Activity (aw) Changes in Probiotic Products—Pilot Study. Foods. 12(21), 4018. https://doi.org/10.3390/foods12214018.
Sionek, B., Szydłowska, A., Küçükgöz, K. & Kołożyn-Krajewska, D. (2023). Traditional and New Microorganisms in Lactic Acid Fermentation of Food. Fermentation. 9(12), 1019. https://doi.org/10.3390/fermentation9121019.
Sivamaruthi, B.S., Kesika, P. & Chaiyasut, C. (2018). Thai Fermented Foods as a Versatile Source of Bioactive Microorganisms—A Comprehensive Review. Sci. Pharm. 86(3), 37. https://doi.org/10.3390/scipharm86030037.
Spinasse, M., Monciozo Domingos, M. & Brilhante de São José, J.F. (2023). Viability of Probiotic Microorganisms and the Effect of Their Addition to Fruit and Vegetable Juices. Microorganisms. 11(5), 1335. https://doi.org/10.3390/microorganisms11051335.
Talearngkul, R., Sae-tan, S. & Sirivarasai, J. (2023). Effect of Yogurt Ice Cream on the Viability and Antidiabetic Potential of the Probiotics Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, and Bifidobacterium animalis subsp. lactis after In Vitro Digestion. Foods. 12, 4373. https://doi.org/10.3390/foods12234373.
Terpou, A., Papadaki, A., Lappa, I.K., Kachrimanidou, V., Bosnea, L.A. & Kopsahelis, N. (20190. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients. 11(7), 1591. https://doi.org/10.3390/nu11071591.
Thorakkattu, P., Khanashyam, A., Shah, K., Sajith Babu, K., Shanker Mundanat, A., Deliephan, A., Deokar, G.S., Santivarangkna, Ch. & Prakash Nirmal, N. (2022). Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods. 11(19), 3094. https://doi.org/10.3390/foods11193094.
Tomasik, P. & Tomasik, P. (2020). Probiotics, Non-Dairy Prebiotics and Postbiotics in Nutrition. Appl. Sci. 10(4), 1470. https://doi.org/10.3390/app10041470.
Vaitkeviciene, R., Zadeike, D., Gaizauskaite, Z., Valentaviciute, K., Marksa, M., Mazdzieriene, R., Bartkiene, E., Lele, V., Juodeikiene, G. & Jakstas, V. (2022). Functionalisation of rice bran assisted by ultrasonication and fermentation for the production of rice bran–lingonberry pulp-based probiotic nutraceutical. Int. J. Food Sci. Tech. 57, 1462-1472. https://doi.org/10.1111/ijfs.15053.
Vera-Santander, V.E., Hernández-Figueroa, R.H., Jiménez-Munguía, M,T., Mani-López, E. & López-Malo, A. (2023). Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules. 28(3), 1230. https://doi.org/10.3390/molecules28031230.
Vesterlund, S., Salminen, K. & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. Int. J. Food Microbiol. 157(2), 319-321. https://doi.org/10.1016/j.ijfoodmicro.2012.05.016.
Vivek, K., Mishra, S., Pradhanb, R., Nagarajana, M., Kumar, P.K., Singhd, S.S., Manvi, D. & Gowdaf, N.A.N. (2023). A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. App. Food Res. 3, 100248. https://doi.org/10.1016/j.afres.2022.100248.
Vougiouklaki, D., Tsironi, T., Tsantes, A.G., Tsakali, E., Van Impe, J.F.M. & Houhoula, D. (2023). Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. Microorganisms. 11(5), 1264. https://doi.org/10.3390/microorganisms11051264.
Wang, S.-Y., Ho, Y.-F., Chen, Y.-P. & Chen, M.-Y. (2015). Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1. Food Microbiol. 46, 494e500. https://doi.org/10.1016/j.fm.2014.09.015.
Wardana, A.A., Wigati, L.P., Tanaka, F., Tanaka, F. & Surono, I.S. (2022). Probiotic cells support alginate-based edible film properties: study of optical, water barrier and antifungal characteristics. Int. J. Food Sci. Tech. 58, 929-938. https://doi.org/10.1111/ijfs.16113.
Waschburger Ames, C., da Cunha K.F., Vitola H.R.S., dos Santos Hackbart H.C., Filho, P.J.S., dos Santos Cruxen C.E., da Silva W.P. & Fiorentini, Â.M. (2021). Evaluation of potentially probiotic Lactobacillus casei CSL3 immobilized on oats and applied to yogurt production. J. Food Process. Preserv. 45, e15803. https://doi.org/10.1111/jfpp.15803.
Wu, W., Liu, G., Li, H., Yang, R., Ai, C., Pang, B., Jiang, C. & Shi, J. (2022). Development of a microecologic product from Lactobacillus rhamnosus based on silica. J. Sci. Food Agric. 102, 7186-7194. https://doi.org/10.1002/jsfa.12084.
Xavier, J.R., Mahalakshmi, M., Kumarr, M., Natarajan, G., Ramana, K.V. & Semwal, A.D. (2020). Optimized production of poly (γ -glutamic acid) (γ -PGA) using Bacillus licheniformis and its application as cryoprotectant for probiotics. Biotech. Appl. Biochem. 67(6), 892-902. https://doi.org/10.1002/bab.1879.
Xie, H., Liao, Y., Woo, M.W., Xiong, H. & Zhao, Q. (2023). Whey protein hydrolysates as prebiotic and protective agent regulate growth and survival of Lactobacillus rhamnosus CICC22152 during spray/freeze-drying, storage and gastrointestinal digestion. J. Sci. Food Agric. 103, 1237-1246. https://doi.org/10.1002/jsfa.12218.
Xu, X., Cui, H., Yuan, Z., Xu, J., Li, J., Liu, J., Liu, H. & Zhu, D. (2022). Effects of different combinations of probiotics on rheology, microstructure, and moisture distribution of soy materials-based yogurt. J. Food Sci. 87, 2820-2830. https://doi.org/10.1111/1750-3841.16204.
Yalmanci, D., Meral, H.D., Dere, S., Kayacan Cakmakoglu, S., Sagdic, O. & Dertli, E. (2024). Evaluation of Fruit Juices as Probiotic Delivery Systems: Challenges, Current Strategies and Health Benefits. TURJAF. 12(4), 699-713. https://doi.org/10.24925/turjafv12i4.699-713.6470.
Zacarias, M.F., Reinheimer, J.A., Vinderola, G. Kulozik, U. & Ambros, S. (2020). Effects of conventional and nonconventional drying on the stability of Bifidobacterium animalis subsp. lactis INL1. Int. J. Dairy Tech. 73(3), 625-633. https://doi.org/10.1111/1471-0307.12684.
Zawistowska-Rojek, A. & Tyski, S. (2022). How to improve health with biological agents – Narrative review. Nutrients. 14(9), 1700. https://doi.org/10.3390/nu14091700
Zawistowska-Rojek, A., Kociszewska, A., Zaręba, T. & Tyski, S. (2022). New Potentially Probiotic Strains Isolated from Humans – Comparison of Properties with Strains from Probiotic Products and ATCC Collection. Pol. J. Microbiol. 71(3), 395-409. https://doi.org/10.33073/pjm-2022-035.
Zhang, W., Chen, Y., Wang, W., Lan, D. & Wang, Y. (2023). Soy lecithin increases the stability and lipolysis of encapsulated algal oil and probiotics complex coacervates. J. Sci. Food Agric. 103, 4164-4173. https://doi.org/10.1002/jsfa.12422.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C., Harris, H., Mattarelli, P., O’Toole, P.W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G.E., Gänzle, M.G. & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782-2858. https://doi.org/10.1099/ijsem.0.004107.
Zhou, T., Kang, W., Han, Y., Li, Y., Shan, H., Ma, W., Yin, B., Yang, R., Liu, X., Li, S., Pan, L., Wang, J., Li, W., Huang, Y. & Gu, R. (2023). Combinedly increased viability of Lactiplantibacillus plantarum grx16 by co-encapsulation of cryoprotectants and porous starch within calcium alginate capsules. Int. J. Food Sci. Tech. 58, 5291-5298. https://doi.org/10.1111/ijfs.16636.
Zhu, Y., Li, J., Feng, X., Shi, Z., Yao, Y. & Shen, R. (2022). Structural characterisation of two polysaccharides from white common bean (Phaseolus vulgaris L.) and the application in microencapsulation of probiotics. Int. J. Food Sci. Tech. 57, 7184-7193. https://doi.org/10.1111/ijfs.16063.
Zhu, Y., Tang, F., Wang, Y., Li, B., Teng, J., Huang, L. & Xia, N. (2024). Study of Lactobacillus plantarum coated with Tremella polysaccharides to improve its intestinal adhesion. J. Sci. Food Agric. 104, 6977-6986. https://doi.org/10.1002/jsfa.13530.
Zidan, S., Hilary, S., Al Dhaheri, A.S., Cheikh Ismail, L., Ali, H.I., Apostolopoulos, V. & Stojanovska, L. (2024). Could psychobiotics and fermented foods improve mood in middle-aged and older women? Maturitas. 181, 107903. https://doi.org/10.1016/j.maturitas.2023.107903.
Žuntar, I., Petric, Z., Bursać Kovacević, D. & Putnik, P. (2020). Safety of Probiotics: Functional Fruit Beverages and Nutraceuticals. Foods. 9(7), 947. https://doi.org/10.3390/foods9070947.