1. Ahmad, R. S., Imran, A., & Hussain, M. B. (2018). Nutritional Composition of Meat. In M. S. Arshad (Ed.), Meat Science and Nutrition. London: IntechOpen. Retrieved July 12, 2022, from: 10.5772/intechopen.77045.10.5772/intechopen.77045
3. Barón, C. L. C., Santos-Donado, P. R., Ramos, P. M., Donado-Pestana, C. M., Delgado, E. F., & Contreras-Castillo, C. J. (2021). Influence of ultimate pH on biochemistry and quality of Longissimus lumborum steaks from Nellore bulls during ageing. International Journal of Food Science and Technology, 56, 3333–3343. DOI: 10.1111/ijfs.14955.
4. Bouvard, V., Loomis, D., Guyton, K. Z., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Mattock, H., & Straif, K. (2015). International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of consumption of red and pro-cessed meat. Lancet Oncology, 16(16), 1599–600. DOI: 10.1016/S1470-2045(15)00444-1.26514947
5. Briggs, M. A., Petersen, K. S., & Kris-Etherton, P. M. (2017). Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare, 5(2), 29. pii: E29. DOI: 10.3390/healthcare5020029.549203228635680
7. Carta, G., Murru, E., Lisai, S., Sirigu, A., Pira, A., Collu, M., Batetta, B., Gambelli, L., & Banni, S. (2015). Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS ONE, 10(3), Article e0120424. DOI: 10.1371/journal.pone.0120424.436161125775474
8. Chen, J., & Liu, H. (2020). Nutritional Indices for Assessing Fatty Acids: A Mini-Review. International Journal of Molecular Sciences, 21(16), Article 5695. DOI: 10.3390/ijms21165695.746085632784511
9. Commission Internationale de L’Éclairage (CIE). (1978). Recommendations on Uniform Color Spaces-Color Difference Equations: Psychometric Color Terms; Supplement No. 2 to CIE Publication No. 15 (E-1.3.1.), 1971/(TC-1-3). Paris, France: CIE.
11. Darwish, W. S., Ikenaka, Y., Morshdy, A. E., Eldesoky, K. I., Nakayama, S., Mizukawa, H., & Ishizuka, M. (2016). β-carotene and retinol contents in the meat of herbivorous ungulates with a special reference to their public health importance. Journal of Veterinary Medical Science, 78(2), 351–354. DOI: 10.1292/jvms.15-0287.478513426498400
12. Daszkiewicz, T., Kubiak, D., Winarski, R., & Koba-Kowalczyk, M. (2012). The effect of gender on the quality of roe deer (Capreolus capreolus L.) meat. Small Ruminant Research, 103(2-3), 169–175. DOI: 10.1016/j.smallrumres.2011.09.044.
13. Daszkiewicz, T., Murawska, D., Kubiak, D., & Han J. (2022). Chemical Composition and Fatty Acid Profile of the Pectoralis major Muscle in Broiler Chickens Fed Diets with Full-Fat Black Soldier Fly (Hermetia illucens) Larvae Meal. Animals, 12(4), 464. DOI: 10.3390/ani12040464.886838035203172
14. De Smet, S., Raes, K., & Demeyer, D. (2004). Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research, 53(2), 81–98. DOI: 10.1051/animres:2004003.
15. Demesko, J., Markowski, J., Demesko, E., Słaba, M., Hejduk, J., & Minias, P. (2019). Ecotype Variation in Trace Element Content of Hard Tissues in the European Roe Deer (Capreolus capreolus). Archives of Environmental Contamination and Toxicology, 76, 76–86. DOI: 10.1007/s00244-018-0580-4.632699530443665
16. Demeyer, D., Mertens, B., De Smet, S., & Ulens, M. (2016). Mechanisms linking colorectal cancer to the consumption of (processed) red meat: a review. Critical Reviews in Food Science and Nutrition, 56: 2747–2766. DOI: 10.1080/10408398.2013.873886.25975275
17. Dietschy, J. M. (1998). Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. Journal of Nutrition, 128(2), 444S–448S. DOI: 10.1093/jn/128.2.444S.9478045
18. du Toit, E., & Oguttu, J. W. (2013). Calpain and Calpastatin Activity Post Mortem and Meat Tenderness: Are the Two Related? Journal of Animal and Veterinary Advances, 12, 683–688. DOI: 10.36478/javaa.2013.683.688.
19. Guasch-Ferré, M., Zong, G., Willett, W. C., Zock, P. L., Wanders, A. J., Hu, F. B., & Sun, Q. (2019). Associations of Monounsaturated Fatty Acids From Plant and Animal Sources With Total and Cause-Specific Mortality in Two US Prospective Cohort Studies. Circulation Research, 124(8), 1266–1275. DOI: 10.1161/CIRCRESAHA.118.313996.645972330689516
21. Henchion, M., Hayes, M., Mullen, A. M., Fenelon, M., & Tiwari, B. (2017). Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods, 6(7), Article 53. DOI: 10.3390/foods6070053.553256028726744
22. Hoffman, L. C. (2001). The effect of different culling methodologies on the physical meat quality attributes of various game species. In H. Ebedes, B. Reilly, W. van Hoven, & B. Penzhorn (Eds.), Proceedings of the 5th international wildlife ranching symposium sustainable utilization – conservation in practice (pp. 212–221). Nelson Mandela Metropolitan University, Port Elizabeth.
23. Hoffman, L. C., & Wiklund, E. (2006). Game and venison – meat for the modern consumer. Meat Science, 74(1), 197–208. DOI: 10.1016/j.meatsci.2006.04.005.22062729
24. Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457. DOI: 10.1016/S0309-1740(98)00034-5.22060626
25. Hutchison, C. L., Mulley, R. C., Wiklund, E., & Flesch, J. S. (2010). Consumer evaluation of venison sensory quality: Effects of sex, body condition score and carcase suspension method. Meat Science, 86, 311–316. DOI: 10.1016/j.meatsci.2010.04.031.20579815
27. Janík, T., Peters, W., Šálek, M., Romportl, D., Jirků, M., Engleder, T., Ernst, M., Neudert, J., & Heurich, M. (2021). The declining occurrence of moose (Alces alces) at the southernmost edge of its range raise conservation concerns. Ecology and Evolution, 11(10): 5468–5483. DOI: 10.1002/ece3.7441.813179334026021
28. Jankowska, B., Żmijewski, T., Kwiatkowska, A., & Korzeniowski, W. (2005). The composition and properties of beaver (Castor fiber) meat. European Journal of Wildlife Research, 51, 283–286. DOI: 10.1007/s10344-005-0102-3.
29. Jenkins, T. C., Wallace, R. J., Moate, P. J., & Mosley, E. E. (2008). Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86(2), 397–412. DOI: 10.2527/jas.2007-0588.18042812
30. Joo, S. T., Kim, G. D., Hwang, Y. H., & Ryu, Y. C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828–836. DOI: 10.1016/j.meatsci.2013.04.044.23702339
31. Juárez, M., Lam, S., Bohrer, B. M., Dugan, M. E. R., Vahmani, P., Aalhus, J., Juárez, A., López-Campos, O., Prieto, N., & Segura, J. (2021). Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods, 10(4), Article 872. DOI: 10.3390/foods10040872.807387833923499
33. Kim, G. -D., Jeong J. -Y., Jung E. -Y., Yang H. -S., Lim H. -T., & Joo S. -T. (2013). The influence of fiber size distribution of type IIB on carcass traits and meat quality in pigs. Meat Science, 94(2), 267–273. DOI: 10.1016/j.meatsci.2013.02.001.23523735
34. Klont, R. E., Brocks, L., & Eikelenboom, G. (1998). Muscle fibre type and meat quality. Meat Science, 49(Supplement 1), 98, S219–S229. DOI: 10.1016/S0309-1740(98)90050-X.
35. Kudrnáčová, E., Bartoň, L., Bureš, D., & Hoffman, L. C. (2018). Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Science, 141, 9–27. DOI: 10.1016/j.meatsci.2018.02.020.29558697
36. Kulczyński, B., Sidor, A., & Gramza-Michałowska, A. (2019). Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidants, 8(9), Article 335. DOI: 10.3390/antiox8090335.676983831443517
37. Lucarini, M., Durazzo, A., Sciubba, F., Di Cocco, M. E., Gianferri, R., Alise, M., Santini, A., Delfini, M., & Lombardi-Boccia, G. (2020). Stability of the Meat Protein Type I Collagen: Influence of pH, Ionic Strength, and Phenolic Antioxidant. Foods, 9(4), Article 480. DOI: 10.3390/foods9040480.723129132290387
38. Luz Fernandez, M., & West, K. L. (2005). Mechanisms by which Dietary Fatty Acids Modulate Plasma Lipids. Journal of Nutrition, 135(9), 2075–2078. DOI: 10.1093/jn/135.9.2075.16140878
39. Mcafee, A. J., Mcsorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M. W., Bonham, M. P., & Fearon, A. M. (2010). Red meat consumption: an overview of the risks and benefits. Meat Science, 84(1), 1–13. DOI: 10.1016/j.meatsci.2009.08.029.20374748
40. McNeill, S. H. (2014). Inclusion of red meat in healthful dietary patterns. Meat Science, 98(3), 452–460. DOI: 10.1016/j.meatsci.2014.06.028.25034452
41. Melton, S. L. (1990). Effects of feeds on flavor of red meat: a review. Journal of Animal Science, 68(12), 4421–4435. DOI: 10.2527/1990.68124421x.2286578
42. Milczarek, A., Janocha, A., Niedziałek, G., Zowczak-Romanowicz, M, Horoszewicz, E., & Piotrowski, S. (2021). Health-Promoting Properties of the Wild-Harvested Meat of Roe Deer (Capreolus capreolus L.) and Red Deer (Cervus elaphus L.). Animals, 11(7), Article 2108. DOI: 10.3390/ani11072108.830023934359237
43. Milovanovic, B. R., Djekic, I. V., Tomović, V. M., Vujadinović, D., & Tomasevic, I. B. (2021). Color measurement of animal source foods. Theory and practice of meat processing, 6(4), 311–319. DOI: 10.21323/2414-438X-2021-6-4-311-319.
44. Neethling, J., Hoffman, L. C., & Muller, M. (2016). Factors influencing the flavour of game meat: A review. Meat Science, 113, 2016, 139–153. DOI: 10.1016/j.meatsci.2015.11.022.26658009
45. Nuernberg, K., Dannenberger, D., Nuernberg, G., Ender, K., Voigt, J., Scollan, N. D., Wood, J. D., Nute, G. R., & Richardson, R. I. (2005). Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. Livestock Production Science, 94(1–2), 137–147. DOI: 10.1016/j.livprodsci.2004.11.036.
46. O’Connor, L. E., Kim, J. E., & Campbell, W. W. (2017). Total red meat intake of ≥0.5 servings/d does not negatively influence cardiovascular disease risk factors: a systemically searched meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 105(1), 57–69. DOI: 10.3945/ajcn.116.142521.518373327881394
48. Official Journal of the European Union (OJEU). (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. L 276/33.
49. Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Willett, W. C., & Huet, F. B. (2011). Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. American Journal of Clinical Nutrition, 94(4), 1088–1096. DOI: 10.3945/ajcn.111.018978 pmid:21831992.317302621831992
50. Papier, K., Knuppel, A., Syam, N., Jebb, S. A., & Key, T. J. (2021). Meat consumption and risk of ischemic heart disease: A systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition. DOI: 10.1080/10408398.2021.1949575.34284672
51. Poławska, E., Cooper, R. G., Jóźwik, A., & Pomianowski, J. (2013). Meat from alternative species – nutritive and dietetic value, and its benefit for human health – a review. CyTA - Journal of Food, 11(1), 37–42. DOI: 10.1080/19476337.2012.680916.
52. Popoola, I. O., Soladoye, P. O., Gaudette, N. J., & Wismer, W. V. (2020). A Review of Sensory and Consumer-related Factors Influencing the Acceptance of Red Meats from Alternative Animal Species. Food Reviews International. DOI: 10.1080/87559129.2020.1860084.
53. Puolanne, E., & Halonen, M. (2010). Theoretical aspects of water-holding in meat. Meat Science, 86(1), 151–165. DOI: 10.1016/j.meatsci.2010.04.038.20627421
54. Purchas, R. W., & Aungsupakorn, R. (1993). Further investigations into the relationship between ultimate pH and tenderness for beef samples from bulls and steers. Meat Science, 34(2), 163–178. DOI: 10.1016/0309-1740(93)90025-D.22060661
55. Rautiainen, H., Bergvall, U. A., Felton, A. M., Tigabu, M., & Kjellander, P. (2021). Nutritional niche separation between native roe deer and the nonnative fallow deer - a test of interspecific competition. Mammal Research Mammal Research, 66, 443–455. DOI: 10.1007/s13364-021-00571-w.
56. Sabow, A. B., Zulkifli, I., Goh, Y. M., Ab Kadir, M. Z. A., Kaka, U., Imlan, J. C., Abubakar, A. A., Adeyemi, K. D., & Sazili, A. Q. (2016). Bleeding Efficiency, Microbiological Quality and Oxidative Stability of Meat from Goats Subjected to Slaughter without Stunning in Comparison with Different Methods of Pre-Slaughter Electrical Stunning. PLoS ONE, 11(4): e0152661. DOI: 10.1371/journal.pone.0152661.481797827035716
57. Salles, M. S. V., Zanetti, M. A., Negrão, J. A., Salles, F. A., Ribeiro, T. M. C., Netto, A. S., & Del Claro, G. R. (2012). Metabolic changes in ruminant calves fed cation-anion diets with different proportions of roughage and concentrate. Revista Brasileira de Zootecnia, 41(2), 414–420. DOI: 10.1590/S1516-35982012000200026.
58. Sanders, L. M., Wilcox, M. L., & Maki, K. C. (2022). Red meat consumption and risk factors for type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition. DOI: 10.1038/s41430-022-01150-1.35513448
59. Scollan, N. D., Dannenberger, D., Nuernberg, K., Richardson, I., MacKintosh, S., Hocquette, J. F., & Moloney, A. P. (2014). Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 97(3), 384–394. DOI: 10.1016/j.meatsci.2014.02.015.24697921
60. Scollan, N., Hocquette, J., Nuernberg, K., Dannenberger, D., Richardson, I., & Moloney, A. (2006). Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 74(1), 17–33. DOI: 10.1016/j.meatsci.2006.05.002.22062713
61. Serrano, M. P., Maggiolino, A., Landete-Castillejos, T., Pateiro, M., Barbería, J. P., Fierro, Y., Domínguez, R., Gallego, L., García, A., De Palo, P., & Lorenzo, J. M. (2020). Quality of main types of hunted red deer meat obtained in Spain compared to farmed venison from New Zealand. Scientific Reports, 10, Article 12157. DOI: 10.1038/s41598-020-69071-2.737605932699311
62. Simonne, A. H., Green, N. R., & Bransby, D. I. (1996). Consumer acceptability and β-carotene content of beef as related to cattle finishing diets. Journal of Food Science, 61(6), 1254–1256. DOI: 10.1111/j.1365-2621.1996.tb10973.x.
63. Smith, N. W., Fletcher, A. J., Hill, J. P., & McNabb, W. C. (2022). Modeling the Contribution of Meat to Global Nutrient Availability. Frontiers in Nutrition, 9. Article 766796. DOI: 10.3389/fnut.2022.766796.884920935187029
64. Sokoła-Wysoczańska, E., Wysoczański, T., Wagner, J., Czyż, K., Bodkowski, R., Lochyński, S., & Patkowska-Sokoła, B. (2018). Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients, 10(10), 1561. DOI: 10.3390/nu10101561.621344630347877
65. Song, S., Ahn, C. -H., Song, M., & Kim, G. -D. (2021). Pork Loin Chop Quality and Muscle Fiber Characteristics as Affected by the Direction of Cut. Foods, 10(1), 43. DOI: 10.3390/foods10010043.782346733375235
66. Soriano, A., & Sánchez-García, C. (2021). Nutritional Composition of Game Meat from Wild Species Harvested in Europe. In C. L. Ranabhat (Ed.), Meat and Nutrition. London, England: IntechOpen. DOI: 10.5772/intechopen.97763.
67. Strazdina, V., Jemeljanovs, A., & Šterna, V. (2012). Fatty Acids Composition of Elk, Deer, Roe Deer and Wild Boar Meat Hunted in Latvia. World Academy of Science, Engineering and Technology. International Journal of Animal and Veterinary Sciences, 6(9), 765–768. DOI: 10.5281/zenodo.1071826.
68. Strazdina, V., Jemeljanovs, A., & Šterna, V. (2013). Nutrition Value of Wild Animal Meat. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 67(4-5): 373–377. DOI: 10.2478/prolas-2013-0074.
69. Tänavots, A., Põldvere, A., Torp, J., Soidla, R., Mahla, T., Andreson, H., & Lepasalu, L. (2015). Effect of age on composition and quality of Longissimus thoracis muscle of the moose (Alces alces L.) harvested in Estonia. Agronomy Research, 13(4), 1131–1142.
70. Taylor, R. G., Labas, R., Smulders, F. J. M, & Wiklund, E. (2002). Ultrastructural changes during aging in Longissimus thoracis from moose and reindeer. Meat Science, 60(4), 321–326. DOI: 10.1016/S0309-1740(01)00120-6.22063633
72. Tufeanu, R., & Tiţa, O. (2016). Possibilities to develop low-fat products: a review. Acta Universitatis Cibiniensis. Series E: Food Technology, 20(1), 3–19. DOI: 10.1515/aucft-2016-0001.
73. U.S. Department of Agriculture & U.S. Department of Health and Human Services (USDA & HHS). (2020). Dietary Guidelines for Americans, 2020-2025. 9th Edition. December 2020. Retrieved July 12, 2022, from: https://www.dietaryguidelines.gov/.
74. Valencak, T. G., Gamsjäger, L., Ohrnberger, S., Culbert, N. J., & Ruf, T. (2015). Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking. BMC Res Notes, 8, 273. DOI: 10.1186/s13104-015-1254-1.448321526116375
75. Van Oeckel, M. J., Warnants, N., Boucqueé, C. V. (1999). Comparison of different methods for measuring water holding capacity and juiciness of pork versus on-line screening methods. Meat Science, 51, 313–320. DOI: 10.1016/S0309-1740(98)00123-5.22062025
76. Van, T. T. H., Yidana, Z., Smooker, P. M., & Coloe, P. J. (2020). Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. Journal of Global Antimicrobial Resistance, 20, 170–177. DOI: 10.1016/j.jgar.2019.07.031.31401170
77. Watanabe, A., Daly, C. C., & Devine, C. E. (1996). The effects of the ultimate pH of meat on tenderness changes during ageing. Meat Science, 42(1), 67–78. DOI: 10.1016/0309-1740(95)00012-7.22060302
78. Whitton, C., Bogueva, D., Marinova, D., & Phillips, C. J. C. (2021). Are We Approaching Peak Meat Consumption? Analysis of Meat Consumption from 2000 to 2019 in 35 Countries and Its Relationship to Gross Domestic Product. Animals, 11(12), Article 3466 DOI: 10.3390/ani11123466.869788334944243
80. Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343–358. DOI: 10.1016/j.meatsci.2007.07.019.22062452
81. Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., & Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science 66(1), 21–32. DOI: 10.1016/S0309-1740(03)00022-6.22063928
82. World Cancer Research Fund International. (2018). Recommendations and public health and policy implications. Retrieved July 12, 2022, from: https://www.wcrf.org/sites/default/files/Recommendations.pdf.
83. Zhang, X., Owens, C. M., & Schilling, M. W. (2017). Meat: the edible flesh from mammals only or does it include poultry, fish, and seafood? Animal Frontiers, 7(4), 12–18. https://doi.org/10.2527/af.2017.0437.10.2527/af.2017.0437
84. Żochowska-Kujawska, J., Sobczak, M., & Lachowicz, K. (2009). Comparison of the texture, rheological properties and myofibre characteristics of sm (semimembranosus) muscle of selected species of game animals. Polish Journal of Food and Nutrition Sciences, 59(3), 243–246.
85. Zong, G., Li Y., Sampson, L., Dougherty, L. W., Willett, W. C., Wanders, A. J., Alssema, M., Zock, P. L., Hu, F. B., & Sun, Q. (2018). Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. The American Journal of Clinical Nutrition, 107(3), 445–453. DOI: 10.1093/ajcn/nqx004.587510329566185