References
- Adebayo M. A., Menkir A. (2015): Assessment of hybrids of drought tolerant maize (Zea mays L.) inbred lines for grain yield and other traits under stress managed conditions. Nigerian Journal of Genetics 28: 19–23. https://doi.org/10.1016/j.nigjg.2015.06.004.
- Adebayo M. A., Menkir A., Gedil M., Blay E., Gracen V., Danquah E., Funmilayo L. (2015): Diversity Assessment of Drought Tolerant Exotic and Adapted Maize (Zea mays L.) Inbred Lines with Microsatellite Markers. Journal of Crop Science and Biotechnology 18: 147–154.
- Adu G. B., Akromah R., Abdulai M. S., Obeng-Antwi K., Alidu H., Tengan K. M. L . (2016): Trait association for improved grain yield of extra-early maturing maize hybrids evaluated in the forest and transitional zones of Ghana. Australian Journal of Crop Science 10: 1127–1135. https://doi.org/10.21475/ajcs.2016.10.08.p7650
- Badu-Apraku B., Akinwale R.O., Oyekunle M. (2014): Efficiency of secondary traits in selecting for improved grain yield in extra-early maize under Striga-infested and Striga-free environments. Plant Breed 133. https://doi:10.1111/pbr.12163
- Badu-Apraku B., Talabi A. O., Ifie B. E., Chabi Y. C., Obeng-Antwi K., Haruna A., Asiedu R. (2018): Gains in Grain Yield of Extra-Early Maize during Three Breeding Periods under Drought and Rainfed Conditions. Crop Science 58: 2399–2412. https://doi.org/10.2135/cropsci2018.03.0168.
- Burgueño J., Crossa J., Cotes J. M., Vicente F. S., Das B. (2011): Prediction Assessment of Linear Mixed Models for Multienvironment Trials. Crop Science 51: 94 4–954. https://doi.org/10.2135/cropsci2010.07.0403
- Crossa J., Burgueño J., Cornelius P. L., McLaren G., Trethowan R., Krishnamachari A. (2006): Modeling Genotype × Environment Interaction Using Additive Genetic Covariances of Relatives for Predicting Breeding Values of Wheat Genotypes. Crop Science 46: 1722–1733. https://doi.org/10.2135/cropsci2005.11-0427.
- Dinesh A., Patil A., Zaidi P. H., Kuchanur P. H., Vinayan M. T., Seetharam K., Gouda A. (2018): Genetic analysis of tropical maize (Zea mays L.) inbred lines under heat stress. The Bioscan: An International Quarterly Journal of Life Sciences 13: 85–88.
- Edmeades G. O. (2013): Progress in achieving and delivering drought tolerance in maize – An Update. The International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca, NY. Pp. 39.
- Gong F., Wu X., Zhang H., Chen Y., and Wang W. (2015): Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science 6:835.
- Khan M. M. H., Rafii M. Y., Ramlee S. I., Jusoh M., Mamun A. (2020): Genetic Variability, Heritability, and Clustering Pattern Exploration of Bambara Groundnut (Vigna subterranea L. Verdc) Accessions for the Perfection of Yield and Yield-Related Traits. BioMed Research International, 2195797. https://doi.org/10.1155/2020/2195797
- Kinama J. M., Stigter C. J., Ong C. K., Ng’ang’a J. K., Gichuki F. N. (2005): Evaporation from soils below sparse crops in contour hedgerow agroforestry in semi-arid Kenya. Agricultural and Forest Meteorology 130: 149–162. https://doi.org/10.1016/j.agrformet.2005.03.007
- Mazid M. S., Rafii M. Y., Hanafi M. M., Rahim H. A., Shabanimofrad M., Lat if M. A. (2013): Agro-morphological characterization and assessment of variability, heritability, genetic advance and divergence in bacterial blight resistant rice genotypes. South African Journal of Botany, 86:15–22. https://doi.org/10.1016/j.sajb.2013.01.004
- Meseka S., Menkir A., Bossey B., Mengesha W. (2018): Performance assessment of drought tolerant maize hybrids under combined drought and heat stress. Agronomy 8: 274.
- Meseka S.K., Menkir A., Ibrahim A.E.S., Ajala S.O. (2006): Genetic analysis of performance of maize inbred lines selected for tolerance to drought under low-nitrogen. Maydica 51: 487–495.
- Mogesse W., Zelleke H., Nigussie M. (2020): General and Specific Combing Ability of Maize (Zea mays.) Inbred Line for Grain Yield and Yield Related Traits Using 8×8 Diallel Crosses. American Journal of BioScience 8: 45. https://doi.org/10.11648/j.ajbio.20200803.11.
- Mohammadi S. A., Prasanna B. M., Singh N. N. (2003): Sequential path model for determining interrelationships among grain yield and related characters in maize. Crop Science 43: 1690–1697. https://doi:10.2135/cropsci2003.1690.
- Mwadzingeni L., Shimelis H., Tesfay S., Tsilo T. J. (2016): Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses. Frontiers in Plant Science 7: 1276. https://doi.org/10.3389/fpls.2016.01276.
- Ramirez-Cabral N. Y. Z., Kumar L., Shabani F. (2017): Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Scientific Reports 7: 5910.
- Sabagh A. E. L., Hossain A., Barutçular C., Khaled A. A. A., Fahad S., Anjorin F. B., Islam M. S., Ratnasekera D., Kizilgeçi F., Yadav G. S., Yıldırım M., Konuskan O., Saneoka H. (2018): Sustainable maize (Zea mays L.) production under drought stress by understanding its adverse effect, survival mechanism and drought tolerance indices. Journal of Experimental Biology and Agricultural Sciences 6: 282–295.
- Talabi A. O., Badu-Apraku B., Fakorede M. A. B. (2017): Genetic Variances and Relationship among Traits of an Early Maturing Maize Population under Drought-stress and Low Nitrogen Environments: Crop Science. 57: 681–692. https://doi:10.2135/cropsci2016.03.0177.
- Usman M. G., Rafii M. Y., Ismail M. R., Malek M. A., Abdul Latif M. (2014): Heritability and Genetic Advance among Chili Pepper Genotypes for Heat Tolerance and Morphophysiological Characteristics: The Scientific World Journal, 308042. https://doi.org/10.1155/2014/308042.
- Wossen T., Abdoulaye T., Alene A., Feleke S., Menkir A., Manyong V. (2017): Measuring the impacts of adaptation strategies to drought stress: The case of drought tolerant maize varieties: Journal of Environmental Management 203: 106–113.
