Have a personal or library account? Click to login
Using NDWI for Diagnosing Moisture Availability in Agricultural Areas Surveyed with UAV Cover

Using NDWI for Diagnosing Moisture Availability in Agricultural Areas Surveyed with UAV

Open Access
|Feb 2026

References

  1. Afshari, S., Sarli, R., Alchin, A.A., Aliabad, O.G., Moradi, F., Saei, M., Lomer, A.R.B., Nasiri, V., 2025. Trend analysis and interactions between surface temperature and vegetation condition: divergent responses across vegetation types. Environmental Monitoring and Assessment 197, 292. https://doi.org/10.1007/s10661-025-13729-9
  2. Alencar Da Silva Allves, K.M., 2024. Application and statistical analysis of multiple water indices based on Landsat 8 reflectance data to detect surface water in a Pampean environment in Argentina. Revista Brasileira de Geografia Fisica 17(2), 1174–1199. https://doi.org/10.26848/rbgf.v17.2.p1174-1199
  3. Alvaro, F., García Del Moral, L.F., Royo, C., 2007. Usefulness of remote sensing for the assessment of growth traits in individual cereal plants grown in the field. International Journal of Remote Sensing 28(11), 2497–2512. https://doi.org/10.1080/01431160600935604
  4. Atanasov, A., 2024. Possibilities of small robotic UAVs for surveillance of agricultural areas in Southern Dobrudzha. Bulgarian Journal of Crop Science 61(3) 100–108. https://doi.org/10.61308/TAGD6115
  5. Atanasov, A., Mihaylov, R., Mihova, G., 2022. Investigating the possibility of monitoring the drying in the upper soil layer by means of a drone in the Dobruja region. In 2022 International Conference Automatics and Informatics (ICAI). Varna, Bulgaria, pp. 115–119. https://doi.org/10.1109/ICAI55857.2022.9960060
  6. Atanasov, A.I., Atanasov, A.Z., 2025. Analysis of opportunities for agricultural area surveillance by UAV and satellite in precision agriculture. Acta Technologica Agriculturae 28(2), 88–96. https://doi.org/10.2478/ata-2025-0012
  7. Chandramohan, K., Elayapillai, P., Vijayalakshmi, G., Kaliraj, S., 2024. Chapter 43 – Evaluating the Relation of NDVI, NDWI, SMI, and LAI to Land and Soil Degradation Processes – a Case Study of Virudhunagar District, Tamil Nadu, India. In: Dharumarajan, S., Kaliraj, S., Adhikari, K., Lalitha, M., Kumar, N. (Eds). Remote Sensing of Soils, Mapping, Monitoring, and Measurement. Elsevier, Amsterdam, The Netherlands, pp. 689–697. ISBN 9780443187735. https://doi.org/10.1016/B978-0-443-18773-5.00040-5
  8. DJI, 2025. Support for Mavic 2. https://www.dji.com/en/mavic-2
  9. Du, J.K., Huang, Y.S., Feng, X.Z, Wang, Z.L., 2001. Study on water bodies extraction and classification from SPOT image. Journal of Remote Sensing 5(3), 214–219.
  10. Gao, B., 1996. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
  11. Jensen, C.R., Mogensen, V.O., Poulsen, H.H., Henson, I.E., Aagot, S., Hansen, E., Ali, M., Wollenweber, B., 1998. Soil water matric potential rather than water content determines drought responses in field-grown lupin (Lupinus angustifolius). Australian Journal of Plant Physiology 25, 353–363.
  12. Koleva, M., Yankova, P., Plamenov, D., Naskova, P., 2025. Digitalization in plant production and plant protection in Bulgaria – current status and future goals. Annals of the University of Craiova – Agriculture, Montanology, Cadastre Series 54(1), 170–181. https://doi.org/10.52846/aamc.v54i1.1554
  13. MAPIR, 2025. Survey3 Cameras. https://www.mapir.camera/collections/survey3
  14. McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17(7), 1425–1432. http://dx.doi.org/10.1080/01431169608948714
  15. Microsoft, 2025. https://www.microsoft.com/en-us/microsoft-365/excel
  16. Pix4D, 2025. Support and Upgrades – PIX4Dfields. https://support.pix4d.com/hc/en-us/articles/360045101131
  17. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Type III – Final Report. NASA/GSFC, Greenbelt, Maryland, USA, 390 pp. https://core.ac.uk/download/pdf/42887948.pdf
  18. Toneva, D., Dimitrova, D., 2024. Some aspects of the water crisis in Bulgaria. In Proceedings of the 15th International Scientific and Practical Conference. Vol. 1. Environment. Technology. Resources. Rezekne Academy of Technologies, Rezekne, Latvia, pp. 373–377. https://doi.org/10.17770/etr2024vol1.7972
  19. Ustin, S.L., Roberts, D.A., Pinzón, J., Jacquemoud, S., Gardner, M., Scheer, G., Castañeda, C.M., Palacios-Orueta, A., 1998. Estimating canopy water content of chaparral shrubs using optical methods. Remote Sensing of Environment 65(3), 280–291. https://doi.org/10.1016/S0034-4257(98)00038-8
  20. Wang, L., Qu, J.J., Hao, X., Zhu, Q., 2008. Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. International Journal of Remote Sensing 29(24), 7065–7075. https://doi.org/10.1080/01431160802226034
  21. Xu, H., 2002. Spatial expansion of urban/town in Fuqing and its driving force analysis. Remote Sensing Technology and Application 17(2), pp. 86–92. https://doi.org/10.11873/j.issn.1004-0323.2002.2.86
  22. Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
Language: English
Page range: 51 - 60
Published on: Feb 9, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Asparuh I. Atanasov, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.