References
- Chabrillat, S., Ben-Dor, E., Cierniewski, J., Gomez, C., Schmid, T., Van Wesemael, B., 2019. Imaging spectroscopy for soil mapping and monitoring. Surveys in Geophysics 40(3), 361–399. https://doi.org/10.1007/s10712-019-09524-0
- Chicco, D., Warrens, M.J., Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7, e623. https://doi.org/10.7717/peerj-cs.623
- Cudennec, L., 2025. Scaling Up Optuna: P2P distributed hyperparameters optimization. Concurrency and Computation: Practice and Experience 37(4–5), e70008. https://doi.org/10.1002/cpe.70008
- Debus, B., Parastar, H., Harrington, P., Kirsanov, D., 2021. Deep learning in analytical chemistry. TrAC Trends in Analytical Chemistry 145, 116459. https://doi.org/10.1016/j.trac.2021.116459
- Deng, Y., Kong, K., Zhang, X., Cao, J., Liu, J., Bao, W., Ma, R., Xie, W., Zhang, B., 2025. Strategies for the efficient estimation of multi-scale soil properties from spectral degradation through Vis-NIR spectroscopy. Infrared Physics and Technology 150, 105994. https://doi.org/10.1016/j.infrared.2025.105994
- El-Mejjaouy, Y., Bastin, J.-F., Baeten, V., Meersmans, J., Oukarroum, A., Dumont, B., Mercatoris, B., 2025. Spectral and textural features for predicting soil phosphorus using Vis-NIR point data and multispectral UAV imagery: A case study from a long-term experiment. Journal of Plant Nutrition and Soil Science. https://doi.org/10.1002/jpln.12012
- Farrar, M.B., Wallace, H.M., Tahmasbian, I., Yule, C.M., Dunn, P.K., Hosseini Bai, S.HHHHhhhH., 2023. Rapid assessment of soil carbon and nutrients following application of organic amendments. CATENA 223, 106928. https://doi.org/10.1016/J.CATENA.2023.106928
- Guo, P., Li, T., Gao, H., Chen, X., Cui, Y., Huang, Y., 2021. Evaluating calibration and spectral variable selection methods for predicting three soil nutrients using VIS-NIR spectroscopy. Remote Sensing 13(19), 4000. https://doi.org/10.3390/rs13194000
- Hodson, T.O., 2022. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
- Hu, L., Yin, C., Ma, S., Liu, Z., 2018. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 205, 574–581. https://doi.org/10.1016/J.SAA.2018.07.054
- Jin, X., Li, S., Zhang, W., Zhu, J., Sun, J., 2020. Prediction of soil-available potassium content with visible near-infrared ray spectroscopy of different pretreatment transformations by the boosting algorithms. Applied Sciences 10(4), 1520. https://doi.org/10.3390/app10041520
- Liu, J., Dong, Z., Xia, J., Wang, H., Meng, T., Zhang, R., Han, J., Wang, N., Xie, J., 2021. Estimation of soil organic matter content based on CARS algorithm coupled with random forest. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 258, 119823. https://doi.org/10.1016/J.SAA.2021.119823
- McDonnell, K., Murphy, F., Sheehan, B., Masello, L., Castignani, G., 2023. Deep learning in insurance: Accuracy and model interpretability using TabNet. Expert Systems with Applications 217, 119543. https://doi.org/10.1016/j.eswa.2023.119543
- Munawar, A.A., Kusumiyati, Andasuryani, Yusmanizar, Adrizal, 2024. Near infrared technology coupled with different spectra correction approaches for fast and non-destructive prediction of chlorogenic acid on intact coffee beans. Acta Technologica Agriculturae 27(1), 23–29. https://doi.org/10.2478/ata-2024-0004
- Munnaf, M.A., Mouazen, A.M., 2023. Spectra transfer based learning for predicting and classifying soil texture with short-ranged Vis-NIRS sensor. Soil and Tillage Research 225, 105545. https://doi.org/10.1016/j.still.2022.105545
- Ng, W., Minasny, B., de Sousa Mendes, W., Melo Demattê, J.A., 2020. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil 6(2), 565–578. https://doi.org/10.5194/soil-6-565-2020
- Niu, Z., Shi, L., Qiao, H., Xu, X., Wang, W., Ma, X., Zhang, J., 2023. Construction of a hyperspectral estimation model for total nitrogen content in Shajiang black soil. Journal of Plant Nutrition and Soil Science 186(2), 196–208. https://doi.org/10.1002/jpln.202100332
- Oberholzer, S., Summerauer, L., Steffens, M., Ifejika Speranza, C., 2024. Best performances of visible-near-infrared models in soils with little carbonate – a field study in Switzerland. Soil 10(1), 231–249. https://doi.org/10.5194/soil-10-231-2024
- Padarian, J., Minasny, B., McBratney, A.B., 2019. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional 16, e00198. https://doi.org/10.1016/J.GEODRS.2018.E00198
- Qi, J., Cheng, P., Zhou, J., Zhang, M., Gao, Q., He, P., Li, L., Muga, F.C., Guo, L., 2025. A novel model for soil organic matter and total nitrogen detection based on visible/shortwave near-infrared spectroscopy. Land 14(2), 239. https://doi.org/10.3390/land14020329
- Rauschenberger, A., Glaab, E., van de Wiel, M.A., 2021. Predictive and interpretable models via the stacked elastic net. Bioinformatics 37(14), 2012–2016. https://doi.org/10.1093/bioinformatics/btaa535
- Reis, A.S., Rodrigues, M., Alemparte Abrantes dos Santos, G.L., Mayara de Oliveira, K., Furlanetto, R.H., Teixeira Crusiol, L.G., Cezar, E., Nanni, M.R., 2021. Detection of soil organic matter using hyperspectral imaging sensor combined with multivariate regression modeling procedures. Remote Sensing Applications: Society and Environment 22, 100492. https://doi.org/10.1016/J.RSASE.2021.100492
- Renard, F., Guedria, S., de Palma, N., Vuillerme, N., 2020. Variability and reproducibility in deep learning for medical image segmentation. Scientific Reports 10(1), 13724. https://doi.org/10.1038/s41598-020-69920-0
- Rong, G., Li, K., Su, Y., Tong, Z., Liu, X., Zhang, J., Zhang, Y., Li, T., 2021. Comparison of tree-structured Parzen estimator optimization in three typical neural network models for landslide susceptibility assessment. Remote Sensing 13(22), 4694. https://doi.org/10.3390/rs13224694
- Sadergaski, L.R., Irvine, S.B., Andrews, H.B., 2023. Partial least squares, experimental design, and near-infrared spectrophotometry for the remote quantification of nitric acid concentration and temperature. Molecules 28(7), 3224. https://doi.org/10.3390/molecules28073224
- Singha, C., Swain, K.C., Sahoo, S., Govind, A., 2023. Prediction of soil nutrients through PLSR and SVMR models by VIs-NIR reflectance spectroscopy. The Egyptian Journal of Remote Sensing and Space Sciences 26(4), 901–918. https://doi.org/10.1016/J.EJRS.2023.10.005
- Sorenson, P.T., Quideau, S.A., Rivard, B., Dyck, M., 2020. Distribution mapping of soil profile carbon and nitrogen with laboratory imaging spectroscopy. Geoderma 359, 113982. https://doi.org/10.1016/J.GEODERMA.2019.113982
- Sun, W., Liu, S., Zhang, X., Li, Y., 2022. Estimation of soil organic matter content using selected spectral subset of hyperspectral data. Geoderma 409, 115653. https://doi.org/10.1016/J.GEODERMA.2021.115653
- Tan, B., You, W., Tian, S., Xiao, T., Wang, M., Zheng, B., Luo, L., 2022. Soil nitrogen content detection based on near-infrared spectroscopy. Sensors 22(20), 8013. https://doi.org/10.3390/s22208013
- Wang, H., Zhang, L., Zhao, J., 2023. Application of a fusion attention mechanism-based model combining bidirectional gated recurrent units and recurrent neural networks in soil nutrient content estimation. Agronomy 13(11), 2724. https://doi.org/10.3390/agronomy13112724
- Wang, P., Chen, S., Yang, S., 2022. Recent advances on penalized regression models for biological data. Mathematics 10(19), 3695. https://doi.org/10.3390/math10193695
- Wang, W., Zhang, Y., Li, Z., Liu, Q., Feng, W., Chen, Y., Jiang, H., Liang, H., Chang, N., 2023. Fourier-transform infrared spectral inversion of soil available potassium content based on different dimensionality reduction algorithms. Agronomy 13(3), 617. https://doi.org/10.3390/agronomy13030617
- Wangeci, A., Adén, D., Nikolajsen, T., Greve, M.H., Knadel, M., 2024. Comparing laser-induced breakdown spectroscopy and visible near-infrared spectroscopy for predicting soil properties: A pan-European study. Geoderma 444, 116865. https://doi.org/10.1016/j.geoderma.2024.116865
- Wei, J., He, X., 2023. Support vector regression model with variant tolerance. Measurement and Control 56(9–10), 1705–1719. https://doi.org/10.1177/00202940231180620
- Xu, S., Zhao, Y., Wang, Y., 2024. Optimizing machine learning models for predicting soil pH and total P in intact soil profiles with visible and near-infrared reflectance (VNIR) spectroscopy. Computers and Electronics in Agriculture 218, 108643. https://doi.org/10.1016/J.COMPAG.2024.108643
- Yeo, C., Suh, N., Kim, Y., 2025. Fused LassoNet: Sequential feature selection for spectral data with neural networks. Chemometrics and Intelligent Laboratory Systems 257, 105315. https://doi.org/10.1016/j.chemolab.2024.105315
- Zhang, W., Kasun, L.C., Wang, Q.J., Zheng, Y., Lin, Z., 2022. A review of machine learning for near-infrared spectroscopy. Sensors 22(24), 9764. https://doi.org/10.3390/s22249764
- Zhong, L., Guo, X., Xu, Z., Ding, M., 2021. Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks. Geoderma 402, 115366. https://doi.org/10.1016/J.GEODERMA.2021.115366