Have a personal or library account? Click to login
Comparative Study of NIR-Based Machine Learning for Predicting Soil Nutrients in Indonesian Farmlands Cover

Comparative Study of NIR-Based Machine Learning for Predicting Soil Nutrients in Indonesian Farmlands

Open Access
|Feb 2026

References

  1. Chabrillat, S., Ben-Dor, E., Cierniewski, J., Gomez, C., Schmid, T., Van Wesemael, B., 2019. Imaging spectroscopy for soil mapping and monitoring. Surveys in Geophysics 40(3), 361–399. https://doi.org/10.1007/s10712-019-09524-0
  2. Chicco, D., Warrens, M.J., Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7, e623. https://doi.org/10.7717/peerj-cs.623
  3. Cudennec, L., 2025. Scaling Up Optuna: P2P distributed hyperparameters optimization. Concurrency and Computation: Practice and Experience 37(4–5), e70008. https://doi.org/10.1002/cpe.70008
  4. Debus, B., Parastar, H., Harrington, P., Kirsanov, D., 2021. Deep learning in analytical chemistry. TrAC Trends in Analytical Chemistry 145, 116459. https://doi.org/10.1016/j.trac.2021.116459
  5. Deng, Y., Kong, K., Zhang, X., Cao, J., Liu, J., Bao, W., Ma, R., Xie, W., Zhang, B., 2025. Strategies for the efficient estimation of multi-scale soil properties from spectral degradation through Vis-NIR spectroscopy. Infrared Physics and Technology 150, 105994. https://doi.org/10.1016/j.infrared.2025.105994
  6. El-Mejjaouy, Y., Bastin, J.-F., Baeten, V., Meersmans, J., Oukarroum, A., Dumont, B., Mercatoris, B., 2025. Spectral and textural features for predicting soil phosphorus using Vis-NIR point data and multispectral UAV imagery: A case study from a long-term experiment. Journal of Plant Nutrition and Soil Science. https://doi.org/10.1002/jpln.12012
  7. Farrar, M.B., Wallace, H.M., Tahmasbian, I., Yule, C.M., Dunn, P.K., Hosseini Bai, S.HHHHhhhH., 2023. Rapid assessment of soil carbon and nutrients following application of organic amendments. CATENA 223, 106928. https://doi.org/10.1016/J.CATENA.2023.106928
  8. Guo, P., Li, T., Gao, H., Chen, X., Cui, Y., Huang, Y., 2021. Evaluating calibration and spectral variable selection methods for predicting three soil nutrients using VIS-NIR spectroscopy. Remote Sensing 13(19), 4000. https://doi.org/10.3390/rs13194000
  9. Hodson, T.O., 2022. Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
  10. Hu, L., Yin, C., Ma, S., Liu, Z., 2018. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 205, 574–581. https://doi.org/10.1016/J.SAA.2018.07.054
  11. Jin, X., Li, S., Zhang, W., Zhu, J., Sun, J., 2020. Prediction of soil-available potassium content with visible near-infrared ray spectroscopy of different pretreatment transformations by the boosting algorithms. Applied Sciences 10(4), 1520. https://doi.org/10.3390/app10041520
  12. Liu, J., Dong, Z., Xia, J., Wang, H., Meng, T., Zhang, R., Han, J., Wang, N., Xie, J., 2021. Estimation of soil organic matter content based on CARS algorithm coupled with random forest. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 258, 119823. https://doi.org/10.1016/J.SAA.2021.119823
  13. McDonnell, K., Murphy, F., Sheehan, B., Masello, L., Castignani, G., 2023. Deep learning in insurance: Accuracy and model interpretability using TabNet. Expert Systems with Applications 217, 119543. https://doi.org/10.1016/j.eswa.2023.119543
  14. Munawar, A.A., Kusumiyati, Andasuryani, Yusmanizar, Adrizal, 2024. Near infrared technology coupled with different spectra correction approaches for fast and non-destructive prediction of chlorogenic acid on intact coffee beans. Acta Technologica Agriculturae 27(1), 23–29. https://doi.org/10.2478/ata-2024-0004
  15. Munnaf, M.A., Mouazen, A.M., 2023. Spectra transfer based learning for predicting and classifying soil texture with short-ranged Vis-NIRS sensor. Soil and Tillage Research 225, 105545. https://doi.org/10.1016/j.still.2022.105545
  16. Ng, W., Minasny, B., de Sousa Mendes, W., Melo Demattê, J.A., 2020. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil 6(2), 565–578. https://doi.org/10.5194/soil-6-565-2020
  17. Niu, Z., Shi, L., Qiao, H., Xu, X., Wang, W., Ma, X., Zhang, J., 2023. Construction of a hyperspectral estimation model for total nitrogen content in Shajiang black soil. Journal of Plant Nutrition and Soil Science 186(2), 196–208. https://doi.org/10.1002/jpln.202100332
  18. Oberholzer, S., Summerauer, L., Steffens, M., Ifejika Speranza, C., 2024. Best performances of visible-near-infrared models in soils with little carbonate – a field study in Switzerland. Soil 10(1), 231–249. https://doi.org/10.5194/soil-10-231-2024
  19. Padarian, J., Minasny, B., McBratney, A.B., 2019. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional 16, e00198. https://doi.org/10.1016/J.GEODRS.2018.E00198
  20. Qi, J., Cheng, P., Zhou, J., Zhang, M., Gao, Q., He, P., Li, L., Muga, F.C., Guo, L., 2025. A novel model for soil organic matter and total nitrogen detection based on visible/shortwave near-infrared spectroscopy. Land 14(2), 239. https://doi.org/10.3390/land14020329
  21. Rauschenberger, A., Glaab, E., van de Wiel, M.A., 2021. Predictive and interpretable models via the stacked elastic net. Bioinformatics 37(14), 2012–2016. https://doi.org/10.1093/bioinformatics/btaa535
  22. Reis, A.S., Rodrigues, M., Alemparte Abrantes dos Santos, G.L., Mayara de Oliveira, K., Furlanetto, R.H., Teixeira Crusiol, L.G., Cezar, E., Nanni, M.R., 2021. Detection of soil organic matter using hyperspectral imaging sensor combined with multivariate regression modeling procedures. Remote Sensing Applications: Society and Environment 22, 100492. https://doi.org/10.1016/J.RSASE.2021.100492
  23. Renard, F., Guedria, S., de Palma, N., Vuillerme, N., 2020. Variability and reproducibility in deep learning for medical image segmentation. Scientific Reports 10(1), 13724. https://doi.org/10.1038/s41598-020-69920-0
  24. Rong, G., Li, K., Su, Y., Tong, Z., Liu, X., Zhang, J., Zhang, Y., Li, T., 2021. Comparison of tree-structured Parzen estimator optimization in three typical neural network models for landslide susceptibility assessment. Remote Sensing 13(22), 4694. https://doi.org/10.3390/rs13224694
  25. Sadergaski, L.R., Irvine, S.B., Andrews, H.B., 2023. Partial least squares, experimental design, and near-infrared spectrophotometry for the remote quantification of nitric acid concentration and temperature. Molecules 28(7), 3224. https://doi.org/10.3390/molecules28073224
  26. Singha, C., Swain, K.C., Sahoo, S., Govind, A., 2023. Prediction of soil nutrients through PLSR and SVMR models by VIs-NIR reflectance spectroscopy. The Egyptian Journal of Remote Sensing and Space Sciences 26(4), 901–918. https://doi.org/10.1016/J.EJRS.2023.10.005
  27. Sorenson, P.T., Quideau, S.A., Rivard, B., Dyck, M., 2020. Distribution mapping of soil profile carbon and nitrogen with laboratory imaging spectroscopy. Geoderma 359, 113982. https://doi.org/10.1016/J.GEODERMA.2019.113982
  28. Sun, W., Liu, S., Zhang, X., Li, Y., 2022. Estimation of soil organic matter content using selected spectral subset of hyperspectral data. Geoderma 409, 115653. https://doi.org/10.1016/J.GEODERMA.2021.115653
  29. Tan, B., You, W., Tian, S., Xiao, T., Wang, M., Zheng, B., Luo, L., 2022. Soil nitrogen content detection based on near-infrared spectroscopy. Sensors 22(20), 8013. https://doi.org/10.3390/s22208013
  30. Wang, H., Zhang, L., Zhao, J., 2023. Application of a fusion attention mechanism-based model combining bidirectional gated recurrent units and recurrent neural networks in soil nutrient content estimation. Agronomy 13(11), 2724. https://doi.org/10.3390/agronomy13112724
  31. Wang, P., Chen, S., Yang, S., 2022. Recent advances on penalized regression models for biological data. Mathematics 10(19), 3695. https://doi.org/10.3390/math10193695
  32. Wang, W., Zhang, Y., Li, Z., Liu, Q., Feng, W., Chen, Y., Jiang, H., Liang, H., Chang, N., 2023. Fourier-transform infrared spectral inversion of soil available potassium content based on different dimensionality reduction algorithms. Agronomy 13(3), 617. https://doi.org/10.3390/agronomy13030617
  33. Wangeci, A., Adén, D., Nikolajsen, T., Greve, M.H., Knadel, M., 2024. Comparing laser-induced breakdown spectroscopy and visible near-infrared spectroscopy for predicting soil properties: A pan-European study. Geoderma 444, 116865. https://doi.org/10.1016/j.geoderma.2024.116865
  34. Wei, J., He, X., 2023. Support vector regression model with variant tolerance. Measurement and Control 56(9–10), 1705–1719. https://doi.org/10.1177/00202940231180620
  35. Xu, S., Zhao, Y., Wang, Y., 2024. Optimizing machine learning models for predicting soil pH and total P in intact soil profiles with visible and near-infrared reflectance (VNIR) spectroscopy. Computers and Electronics in Agriculture 218, 108643. https://doi.org/10.1016/J.COMPAG.2024.108643
  36. Yeo, C., Suh, N., Kim, Y., 2025. Fused LassoNet: Sequential feature selection for spectral data with neural networks. Chemometrics and Intelligent Laboratory Systems 257, 105315. https://doi.org/10.1016/j.chemolab.2024.105315
  37. Zhang, W., Kasun, L.C., Wang, Q.J., Zheng, Y., Lin, Z., 2022. A review of machine learning for near-infrared spectroscopy. Sensors 22(24), 9764. https://doi.org/10.3390/s22249764
  38. Zhong, L., Guo, X., Xu, Z., Ding, M., 2021. Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks. Geoderma 402, 115366. https://doi.org/10.1016/J.GEODERMA.2021.115366
Language: English
Page range: 27 - 34
Published on: Feb 9, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Adnan Adnan, Taufik Iqbal Ramdhani, Yaya Suryana, Abdul Aziz, Taslim Rochmadi, Amrullah Kamaruddin, Ninon Nurul Faiza, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.