Have a personal or library account? Click to login
Investigation of PV System Tilt Angle by Neural Network Modelling of Energy Balance Cover

Investigation of PV System Tilt Angle by Neural Network Modelling of Energy Balance

Open Access
|Feb 2026

References

  1. Abubakar, M., Che, Y., Ivascu, L., Almasoudi, F.M., Jamil, I., 2022. Performance analysis of energy production of large-scale solar plants based on artificial intelligence (machine learning) technique. Processes 10(9), 1843. https://doi.org/10.3390/pr10091843
  2. Aslam, A., Ahmed, N., Qureshi, S.A., Assadi, M., Ahmed, N., 2022. Advances in solar PV systems; a comprehensive review of PV performance, influencing factors, and mitigation techniques. Energies 15(20), 7595. https://doi.org/10.3390/en15207595
  3. Benkaciali, S., Haddadi, M., Khellaf, A., Gairaa, K., Guermoui, M., 2016. Evaluation of the global solar irradiation from the artificial neural network technique. Journal of Renewable Energies 19(4), 617–631. https://doi.org/10.54966/jreen.v19i4.599
  4. Cereghetti, N., Bura, E., Chianese, D., Friesen, G., Realini, A., Rezzonico, S., 2003. Power and energy production of PV modules statistical considerations of 10 years activity. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion 3, 2105–2108. https://doi.org/10.1109/WCPEC.2003.1305194
  5. Chinchilla, M., Santos-Martín, D., Carpintero-Rentería, M., Lemon, S., 2021. Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data. Applied Energy 281, 116056. https://doi.org/10.1016/j.apenergy.2020.116056
  6. Dimovski, A., Moncecchi, M., Falabretti, D., Merlo, M., 2020. PV forecast for the optimal operation of the medium voltage distribution network: A real-life implementation on a large scale pilot. Energies 13(20), 5330. https://doi.org/10.3390/en13205330
  7. Farooq, U., Mushtaq, M.F., Ullah, Z., Ejaz, M.T., Akram, U., Aslam, S., 2025. Time series analysis of solar power generation based on machine learning for efficient monitoring. Engineering Reports 7(2), e70023. https://doi.org/10.1002/eng2.70023
  8. Hasan, K., Yousuf, S.B., Tushar, M.S.H.K., Das, B.K., Das, P., Islam, M.S., 2021. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Science & Engineering 10(2), 656–675. https://doi.org/10.1002/ese3.1043
  9. Hua, Y., He, W., Liu, P., 2020. Optimum tilt angles of solar panels: A case study for Gansu Province, Northwest China. Applied Solar Energy 56, 388–396. https://doi.org/10.3103/S0003701X20050060
  10. Jacobson, M.Z., Jadhav, V., 2018. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Solar Energy 169, 55–66. https://doi.org/10.1016/j.solener.2018.04.030
  11. Jathar, L.D., Ganesan, S., Awasarmol, U., Nikam, K., Shahapurkar, K., Soudagar, M.E.M., Fayaz, H., El-Shafay, A.S., Kalam, M.A., Bouadila, S., Baddadi, S., Tirth, V., Nizami, A.S., Lam, S.S., Rehan, M., 2023. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environmental Pollution 326, 121474. https://doi.org/10.1016/j.envpol.2023.121474
  12. Li, D.H.W., Lam, T.N.T., 2007. Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data. International Journal of Photoenergy 2007, 85402. https://doi.org/10.1155/2007/85402
  13. Libra, M., Kozelka, M., Šafránková, J., Belza, R., Poulek, V., Beránek, V., Sedláček, J., Zholobov, M., Šubrt, T., Severová, L., 2024. Agrivoltaics: dual usage of agricultural land for sustainable development. International Agrophysics 38(1), 121–126. https://doi.org/10.31545/intagr/184133
  14. Ma, M., He, B., Shen, R., Wang, Y., Wang, N., 2022. An adaptive interval power forecasting method for photovoltaic plant and its optimization. Sustainable Energy Technologies and Assessments 52(D), 102360. https://doi.org/10.1016/j.seta.2022.102360
  15. Markovics, D., Mayer, M.J., 2022. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews 161, 112364. https://doi.org/10.1016/j.rser.2022.112364
  16. Mellit, A., Kalogirou, S., 2021. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renewable and Sustainable Energy Reviews 143, 110889. https://doi.org/10.1016/j.rser.2021.110889
  17. Mostafavi, E.S., Ramiyani, S.S., Sarvar, R., Moud, H.I., Mousavi, S.M., 2013. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran. Energy 49, 204–210. https://doi.org/10.1016/j.energy.2012.11.023
  18. Ni, Q., Zhuang, S., Sheng, H., Wang, S., Xiao, J., 2017. An optimized prediction intervals approach for short term PV power forecasting. Energies 10(10), 1669. https://doi.org/10.3390/en10101669
  19. Poncelet, K., Höschle, H., Delarue, E., Virag, A., D‘haeseleer, W., 2017. Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Transactions on Power Systems 32(3), 1936–1948. https://doi.org/10.1109/TPWRS.2016.2596803
  20. Poulek, V., Aleš, Z., Finsterle, T., Libra, M., Beránek, V., Severová, L., Belza, R., Mrázek, J., Kozelka, M., Svoboda, R., 2024. Reliability characteristics of first-tier photovoltaic panels for agrivoltaic systems – practical consequences. International Agrophysics 38(4), 383–391. https://doi.org/10.31545/intagr/192173
  21. Senger, G., Chtirkova, B., Folini, D., Wohland, J., Wild, M., 2024. Persistent extreme surface solar radiation and its implications on solar photovoltaics. Earth‘s Future 12(8), e2023EF004266. https://doi.org/10.1029/2023EF004266
  22. Starke, A.R., Lemos, L.F.L., Barni, C.M., Machado, R.D., Cardemil, J.M., Boland, J., Colle, S., 2021. Assessing one-minute diffuse fraction models based on worldwide climate features. Renewable Energy 177, 700–714. https://doi.org/10.1016/j.renene.2021.05.108
  23. Wang, L., Mao, M., Xie, J., Liao, Z., Zhang, H., Li, H., 2023. Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model. Energy 262(B), 125592. https://doi.org/10.1016/j.energy.2022.125592
  24. Zeeshan, S., Aized, T., 2023. Design and analysis of a solar energy system for a fruit harvesting robot in Pakistan. Acta Technologica Agriculturae 26(4), 185–193. https://doi.org/10.2478/ata-2023-0025
Language: English
Page range: 1 - 6
Published on: Feb 9, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Vladimír Madola, Monika Božiková, Stanislav Paulovič, Matúš Bilčík, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.