References
- Abubakar, M., Che, Y., Ivascu, L., Almasoudi, F.M., Jamil, I., 2022. Performance analysis of energy production of large-scale solar plants based on artificial intelligence (machine learning) technique. Processes 10(9), 1843. https://doi.org/10.3390/pr10091843
- Aslam, A., Ahmed, N., Qureshi, S.A., Assadi, M., Ahmed, N., 2022. Advances in solar PV systems; a comprehensive review of PV performance, influencing factors, and mitigation techniques. Energies 15(20), 7595. https://doi.org/10.3390/en15207595
- Benkaciali, S., Haddadi, M., Khellaf, A., Gairaa, K., Guermoui, M., 2016. Evaluation of the global solar irradiation from the artificial neural network technique. Journal of Renewable Energies 19(4), 617–631. https://doi.org/10.54966/jreen.v19i4.599
- Cereghetti, N., Bura, E., Chianese, D., Friesen, G., Realini, A., Rezzonico, S., 2003. Power and energy production of PV modules statistical considerations of 10 years activity. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion 3, 2105–2108. https://doi.org/10.1109/WCPEC.2003.1305194
- Chinchilla, M., Santos-Martín, D., Carpintero-Rentería, M., Lemon, S., 2021. Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data. Applied Energy 281, 116056. https://doi.org/10.1016/j.apenergy.2020.116056
- Dimovski, A., Moncecchi, M., Falabretti, D., Merlo, M., 2020. PV forecast for the optimal operation of the medium voltage distribution network: A real-life implementation on a large scale pilot. Energies 13(20), 5330. https://doi.org/10.3390/en13205330
- Farooq, U., Mushtaq, M.F., Ullah, Z., Ejaz, M.T., Akram, U., Aslam, S., 2025. Time series analysis of solar power generation based on machine learning for efficient monitoring. Engineering Reports 7(2), e70023. https://doi.org/10.1002/eng2.70023
- Hasan, K., Yousuf, S.B., Tushar, M.S.H.K., Das, B.K., Das, P., Islam, M.S., 2021. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Science & Engineering 10(2), 656–675. https://doi.org/10.1002/ese3.1043
- Hua, Y., He, W., Liu, P., 2020. Optimum tilt angles of solar panels: A case study for Gansu Province, Northwest China. Applied Solar Energy 56, 388–396. https://doi.org/10.3103/S0003701X20050060
- Jacobson, M.Z., Jadhav, V., 2018. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Solar Energy 169, 55–66. https://doi.org/10.1016/j.solener.2018.04.030
- Jathar, L.D., Ganesan, S., Awasarmol, U., Nikam, K., Shahapurkar, K., Soudagar, M.E.M., Fayaz, H., El-Shafay, A.S., Kalam, M.A., Bouadila, S., Baddadi, S., Tirth, V., Nizami, A.S., Lam, S.S., Rehan, M., 2023. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environmental Pollution 326, 121474. https://doi.org/10.1016/j.envpol.2023.121474
- Li, D.H.W., Lam, T.N.T., 2007. Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data. International Journal of Photoenergy 2007, 85402. https://doi.org/10.1155/2007/85402
- Libra, M., Kozelka, M., Šafránková, J., Belza, R., Poulek, V., Beránek, V., Sedláček, J., Zholobov, M., Šubrt, T., Severová, L., 2024. Agrivoltaics: dual usage of agricultural land for sustainable development. International Agrophysics 38(1), 121–126. https://doi.org/10.31545/intagr/184133
- Ma, M., He, B., Shen, R., Wang, Y., Wang, N., 2022. An adaptive interval power forecasting method for photovoltaic plant and its optimization. Sustainable Energy Technologies and Assessments 52(D), 102360. https://doi.org/10.1016/j.seta.2022.102360
- Markovics, D., Mayer, M.J., 2022. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews 161, 112364. https://doi.org/10.1016/j.rser.2022.112364
- Mellit, A., Kalogirou, S., 2021. Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renewable and Sustainable Energy Reviews 143, 110889. https://doi.org/10.1016/j.rser.2021.110889
- Mostafavi, E.S., Ramiyani, S.S., Sarvar, R., Moud, H.I., Mousavi, S.M., 2013. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran. Energy 49, 204–210. https://doi.org/10.1016/j.energy.2012.11.023
- Ni, Q., Zhuang, S., Sheng, H., Wang, S., Xiao, J., 2017. An optimized prediction intervals approach for short term PV power forecasting. Energies 10(10), 1669. https://doi.org/10.3390/en10101669
- Poncelet, K., Höschle, H., Delarue, E., Virag, A., D‘haeseleer, W., 2017. Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Transactions on Power Systems 32(3), 1936–1948. https://doi.org/10.1109/TPWRS.2016.2596803
- Poulek, V., Aleš, Z., Finsterle, T., Libra, M., Beránek, V., Severová, L., Belza, R., Mrázek, J., Kozelka, M., Svoboda, R., 2024. Reliability characteristics of first-tier photovoltaic panels for agrivoltaic systems – practical consequences. International Agrophysics 38(4), 383–391. https://doi.org/10.31545/intagr/192173
- Senger, G., Chtirkova, B., Folini, D., Wohland, J., Wild, M., 2024. Persistent extreme surface solar radiation and its implications on solar photovoltaics. Earth‘s Future 12(8), e2023EF004266. https://doi.org/10.1029/2023EF004266
- Starke, A.R., Lemos, L.F.L., Barni, C.M., Machado, R.D., Cardemil, J.M., Boland, J., Colle, S., 2021. Assessing one-minute diffuse fraction models based on worldwide climate features. Renewable Energy 177, 700–714. https://doi.org/10.1016/j.renene.2021.05.108
- Wang, L., Mao, M., Xie, J., Liao, Z., Zhang, H., Li, H., 2023. Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model. Energy 262(B), 125592. https://doi.org/10.1016/j.energy.2022.125592
- Zeeshan, S., Aized, T., 2023. Design and analysis of a solar energy system for a fruit harvesting robot in Pakistan. Acta Technologica Agriculturae 26(4), 185–193. https://doi.org/10.2478/ata-2023-0025