References
- AKBARI, M. – PIRI, H. – RENZI, M. – BIETRESATO, M. 2024. The effects of biodiesel on the performance and gas emissions of farm tractors’ engines: A systematic review, meta-analysis, and meta-regression. In Energies, vol. 17, no. 17, article no. 4226. DOI: https://doi.org/10.3390/en17174226
- ALGAYYIM, S. J. M. – WANDEL, A. P. – YUSAF, T. – AL-LWAYZY, S. – HAMAWAND, I. 2018. Impact of butanol-acetone mixture as a fuel additive on diesel engine performance and emissions. In Fuel, vol. 227, pp. 118–126. DOI: https://doi.org/10.1016/j.fuel.2018.04.091
- ALGAYYIM, S. J. M. – WANDEL, A. P. – YUSAF, T. – HAMAWAND, I. 2017. The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engine. In Energy, vol. 140, part 1, pp. 1074–1086. DOI: https://doi.org/10.1016/j.energy.2017.09.044
- ALPTEKIN, E. 2017. Evaluation of ethanol and isopropanol as additives with diesel fuel in a CRDI diesel engine. In Fuel, vol. 205, pp. 161–172. DOI: https://doi.org/10.1016/j.fuel.2017.05.076
- AN, H. – YANG, W. M. – CHOU, S. K. – CHUA, K. J. 2012. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions. In Applied Energy, vol. 99, pp. 363–371. DOI: https://doi.org/10.1016/j.apenergy.2012.05.049
- ARANSIOLA, E. – BETIKU, E. – IKHUOMOREGBE, D. – OJUMU, T. 2012. Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. In African Journal of Biotechnology, vol. 11, no. 22, pp. 6178–6186. DOI: https://doi.org/10.5897/AJB11.2301
- ARAVIND, S. – BARIK, D. – PRAVEENKUMAR, S. – TUDU, K. – DARA, R. N. 2025. Influence of compression ratio variations on hydrogen combustion dynamics in a tri-fuel agricultural diesel engine operating with diesel, algae spirogyra methyl ester, and di-tert-butyl peroxide. In International Journal of Hydrogen Energy, vol. 143, pp. 429–440. DOI: https://doi.org/10.1016/j.ijhydene.2025.01.113 Get rights and content
- ASHOK, B. – NANTHAGOPAL, K. – SUBBARAO, R. – JOHNY, A. – MOHAN, A. – TAMILARASU, A. 2017. Experimental studies on the effect of metal oxide and antioxidant additives with Calophyllum Inophyllum Methyl ester in compression ignition engine. In Journal of Cleaner Production, vol. 166, pp. 474–484. DOI: https://doi.org/10.1016/j.jclepro.2017.08.050
- ATMANLI, A. 2016. Comparative analyses of diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. In Fuel, vol. 176, pp. 209–215. DOI: https://doi.org/10.1016/j.fuel.2016.02.076
- BARI, S. 2014. Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel. In Applied Energy, vol. 124, pp. 35–43. DOI: https://doi.org/10.1016/j.apenergy.2014.03.007
- BENCHEIKH, K. – ATABANI, A. E. – SHOBANA, S. – MOHAMMED, M. N. – UĞUZ, G. – ARPA, O. – KUMAR, G. – AYANOĞLU, A. – BOKHARI, A. 2019. Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel– diesel–propanol blends. In Sustainable Energy Technologies and Assessments, vol. 35, pp. 321–334. DOI: https://doi.org/10.1016/j.seta.2019.08.007
- BHASKAR, S. V. 2018. Experimental analysis on exhaust emissions of diesel engine using Madhuca Indica biodiesel and its diesel blends. In International Journal for Research in Applied Science & Engineering Technology, vol. 6, no. 1, pp. 3348–3353. DOI: https://doi.org/10.22214/ijraset.2018.1466
- BITTLE, J. A. – KNIGHT, B. M. – JACOBS, T. J. 2010. Interesting behavior of biodiesel ignition delay and combustion duration. In Energy & Fuels, vol. 24, no. 8, pp. 4166–4177. DOI: https://doi.org/10.1021/ef1004539
- BOHON, M. D. – METZGER, B. A. – LINAK, W. P. – KING, C. J. – ROBERTS, W. L. 2011. Glycerol combustion and emissions. In Proceedings of the Combustion Institute, vol. 33, no. 2, pp. 2717–2724. DOI: https://doi.org/10.1016/j.proci.2010.06.154
- CAN, Ö. 2014. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. In Energy Conversion and Management, vol. 87, pp. 676–686. DOI: https://doi.org/10.1016/j.enconman.2014.07.066
- CORONADO, C. R. – DE CARVALHO JR, J. A. – SILVEIRA, J. L. 2009. Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market. In Fuel Processing Technology, vol. 90, no. 2, pp. 204–211. DOI: https://doi.org/10.1016/j.fuproc.2008.09.006
- DHANASEKARAN, R. – GANESAN, S. – KUMAR, B. R. – SARAVANAN, S. 2019. Utilization of waste cooking oil in a light-duty DI diesel engine for cleaner emissions using bio-derived propanol. In Fuel, vol. 235, pp. 832–837. DOI: https://doi.org/10.1016/j.fuel.2018.08.093
- DOĞAN, O. 2011. The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. In Fuel, vol. 90, no. 7, pp. 2467–2472. DOI: https://doi.org/10.1016/j.fuel.2011.02.033
- FAIZOLLAHZADEH ARDABILI, S. – NAJAFI, B. – ALIZAMIR, M. – MOSAVI, A. – SHAMSHIRBAND, S. – RABCZUK, T. 2018. Using SVMRSM and ELM-RSM approaches for optimizing the production process of methyl and ethyl esters. In Energies, vol. 11, no. 11, article no. 2889. DOI: https://doi.org/10.3390/en11112889
- GHAZANFARI, J. – NAJAFI, B. – FAIZOLLAHZADEH ARDABILI, S. – SHAMSHIRBAND, S. 2017. Limiting factors for the use of palm oil biodiesel in a diesel engine in the context of the ASTM standard. In Cogent Engineering, vol. 4, no. 1, article no. 1411221. DOI: https://doi.org/10.1080/23311916.2017.1411221
- GÓMEZ-CUENCA, F. – GÓMEZ-MARÍN, M. – FOLGUERAS-DÍAZ, M. B. 2013. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine. In Energy Conversion and Management, vol. 75, pp. 741–747. DOI: https://doi.org/10.1016/j.enconman.2013.07.012
- HERRERO DÁVILA, L. 2013. Chapter 6: Food Waste and Catering Waste; Focus on Valorisation of Used Cooking Oil and Recovered Triglycerides. In KAZMI, A. – SHUTTLEWORTH, P. (Eds.). The Economic Utilisation of Food Co-Products, 246 pp. ISBN 978-1-84973-732-6. DOI: https://doi.org/10.1039/9781849737326-00130
- IACONO, G. E. – GURGACZ, F. – BASSEGIO, D. – DE SOUZA, S. N. M. – SECCO, D. 2024. Agricultural tractor engine performance and emissions using biodiesel-ethanol blends. In Engenharia Agrícola, vol. 44, article no. e20230089. DOI: https://doi.org/10.1590/1809-4430-Eng.Agric.v44e20230089/2024
- JAMROZIK, A. – TUTAK, W. – PYRC, M. – SOBIEPAŃSKI, M. 2017. Effect of diesel-biodiesel-ethanol blend on combustion, performance, and emissions characteristics on a direct injection diesel engine. In Thermal Science, vol. 21, no. 1, pp. 591–604. DOI: https://doi.org/10.2298/TSCI160913275J
- KARABEKTAS, M. – HOSOZ, M. 2009. Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. In Renewable Energy, vol. 34, no. 6, pp. 1554–1559. DOI: https://doi.org/10.1016/j.renene.2008.11.003
- KATRYNIOK, B. – PAUL, S. – DUMEIGNIL, F. 2013. Recent developments in the field of catalytic dehydration of glycerol to acrolein. In ACS Catalysis, vol. 3, no. 8, pp. 1819–1834. DOI: https://doi.org/10.1021/cs400354p
- KOVÁCS, L. – BOLLÓ, B. – SZABÓ, S. 2024. A complex comparative study of two dissimilar engine valve constructions, for the in-cylinder flow behaviour of a high speed, IC engine. In Acta Polytechnica Hungarica, vol. 21, no. 4.
- LA ROSA, A. D. – BANATAO, D. R. – PASTINE, S. J. – LATTERI, A. – CICALA, G. 2016. Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. In Composites Part B: Engineering, vol. 104, pp. 17–25. DOI: https://doi.org/10.1016/j.compositesb.2016.08.015
- LARKI, I. – ZAHEDI, A. – ASADI, M. – FOROOTAN, M. M. – FARAJOLLAHI, M. – AHMADI, R. –AHMADI, A. 2023. Mitigation approaches and techniques for combustion power plants flue gas emissions: A comprehensive review. In Science of The Total Environment, vol. 903, article no. 166108. DOI: https://doi.org/10.1016/j.scitotenv.2023.166108
- LI, G. – LIU, Z. – LEE, T. H. – LEE, C. F. – ZHANG, C. 2018. Effects of dilute gas on combustion and emission characteristics of a common-rail diesel engine fueled with isopropanol-butanol-ethanol and diesel blends. In Energy Conversion and Management, vol. 165, pp. 373–381. DOI: https://doi.org/10.1016/j.enconman.2018.03.073
- MUELLER, C. – BOEHMAN, A. – MARTIN, G. 2009. An experimental investigation of the origin of increased NOx emissions when fueling a heavy-duty compression-ignition engine with soy biodiesel. In SAE International Journal of Fuels and Lubricants, vol. 2, no. 1, pp. 789–816. DOI: https://doi.org/10.4271/2009-01-1792
- NADKARNI, R. A. K. 2007. Guide to ASTM Test Methods for the Analysis of Petroleum Products and Lubricants. ASTM Stock No. MNL44--2nd. West Conshohocken, PA, USA : ASTM International, 315 pp. ISBN 978-0-8031-4274-9. Availabe at: https://prime.erpnext.com/files/GuidetoAstmTestMethodsfortheAnalysisofPetroleumProductsandLubricantsSecondEdition.pdf
- NAJAFI, B. 2009. Modeling of effect of biodiesel cetane number, density and viscosity on ignition delay. In The Journal of Engine Research, vol. 16, no. 16, pp. 36–42. Available at: https://www.engineresearch.ir/article_697603.html?lang=en
- NAJAFI, B. – FAIZOLLAHZADEH ARDABILI, S. – MOSAVI, A. – SHAMSHIRBAND, S. – RABCZUK, T. 2018. An intelligent artificial neural network-response surface methodology method for accessing the optimum biodiesel and diesel fuel blending conditions in a diesel engine from the viewpoint of exergy and energy analysis. In Energies, vol. 11, no. 4, article no. 860. DOI: https://doi.org/10.3390/en11040860
- NAKAGAWA, Y. – TOMISHIGE, K. 2011. Heterogeneous catalysis of the glycerol hydrogenolysis. In Catalysis Science & Technology, vol. 1, no. 2, pp. 179–190. DOI: https://doi.org/10.1039/C0CY00054J
- NAYAK, S. K. – BEHERA, G. R. – MISHRA, P. C. – KUMAR, A. 2017. Functional characteristics of jatropha biodiesel as a promising feedstock for engine application. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 39, no. 3, pp. 299–305. DOI: https://doi.org/10.1080/15567036.2015.1120826
- PAL, A.– VERMA, A.– KACHHWAHA, S. S. – MAJI, S. 2010. Biodiesel production through hydrodynamic cavitation and performance testing. In Renewable Energy, vol. 35, no. 3, pp. 619–624. DOI: https://doi.org/10.1016/j.renene.2009.08.027
- PINZI, S. – REDEL-MACÍAS, M. D. – LEIVA-CANDIA, D. E. – SORIANO, J. A. – DORADO, M. P. 2017. Influence of ethanol/diesel fuel and propanol/diesel fuel blends over exhaust and noise emissions. In Energy Procedia, vol. 142, pp. 849–854. DOI: https://doi.org/10.1016/j.egypro.2017.12.136
- QASIM, M. – MAHMOOD ANSARI, T. – HUSSAIN, M. 2017. Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils. In Energies, vol. 10, no. 7, article no. 1023. DOI: https://doi.org/10.3390/en10071023
- SARAVANAN, S. – NAGARAJAN, G. – ANAND, S. – SAMPATH, S. 2012. Correlation for thermal NOx formation in compression ignition (CI) engine fuelled with diesel and biodiesel. In Energy, vol. 42, no. 1, pp. 401–410. DOI: https://doi.org/10.1016/j.energy.2012.03.028
- SCHOBERT, H. H. 2013. Chemistry of Fossil Fuels and Biofuels. Cambridge, UK : Cambridge University Press, 497 pp. ISBN 9780511844188. DOI: https://doi.org/10.1017/CBO9780511844188
- ŞEN, M. 2019. The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend. In Fuel, vol. 254, article no. 115617. DOI: https://doi.org/10.1016/j.fuel.2019.115617
- ŞEN, M. 2024. Optimization of performance and emission of a diesel engine fueled with isopropyl alcohol blends: A comparative ANN-GA and RSM-HCO application. In Engineering Science and Technology, an International Journal, vol. 55, article no. 101733. DOI: https://doi.org/10.1016/j.jestch.2024.101733
- SIVALINGAM, S. – HARISH, A. – SELVA, M. R. 2024. Chapter 5: Environmental and health effects of global warming. In Health and Environmental Effects of Ambient Air Pollution, vol. 1, pp. 109–129. DOI: https://doi.org/10.1016/B978-0-443-16088-2.00008-9
- THONGCHAI, S. – NILAPHAI, O. – PHANPHATTRAPONG, P. – TONGROON, M. 2024. Effect of the ternary blends (ethanolbiodiesel-diesel) on deterioration of a stationary agricultural engine. In The Journal of Industrial Technology, vol. 20, no. 2, pp. 212–228. Available at: https://ojs.kmutnb.ac.th/index.php/joindtech/article/view/7525/5250
- TSAI, J.-H. – CHEN, S.-J. – HUANG, K.-L. – LIN, W.-Y. – LEE, W.-J. – LIN, C.-C. – HSIEH, L.-T. – CHIU, J.-Y. – KUO, W.-C. 2013. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted PM, particulate carbon, and PAHs. In Science of The Total Environment, vol. 466–467, pp. 195–202. DOI: https://doi.org/10.1016/j.scitotenv.2013.07.025
- VAN DEN HEEDE, P. – DE BELIE, N. 2012. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’concretes: Literature review and theoretical calculations. In Cement Concrete Composites, vol. 34, no. 4, pp. 431–442. DOI: https://doi.org/10.1016/j.cemconcomp.2012.01.004
- XUE, Y. 2015. Energy internet or comprehensive energy network? In Journal of Modern Power Systems and Clean Energy, vol. 3, no. 3, pp. 297–301. DOI: https://doi.org/10.1007/s40565-015-0111-5
- YILMAZ, E. – ARSLAN, H. – BIDECI, A. 2019. Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). In Construction Building Materials, vol. 202, pp. 806–813. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.057
- ZHENG, B. – CHEN, J.-Y. – SONG, Z. – MAO, E. – ZHOU, Q. – LUO, Z. – LIU, K. 2022. Prediction and optimization of emission in an agricultural harvest engine with biodiesel-diesel blends by a method of ANN and CMA-ES. In Computers and Electronics in Agriculture, vol. 197, article no. 106903. DOI: https://doi.org/10.1016/j.compag.2022.106903