Have a personal or library account? Click to login
Environmental Assessment of Emission and Performance of Diesel Engine Fuelled by Propylene Glycol-Biodiesel-Diesel Cover

Environmental Assessment of Emission and Performance of Diesel Engine Fuelled by Propylene Glycol-Biodiesel-Diesel

Open Access
|Nov 2025

References

  1. AKBARI, M. – PIRI, H. – RENZI, M. – BIETRESATO, M. 2024. The effects of biodiesel on the performance and gas emissions of farm tractors’ engines: A systematic review, meta-analysis, and meta-regression. In Energies, vol. 17, no. 17, article no. 4226. DOI: https://doi.org/10.3390/en17174226
  2. ALGAYYIM, S. J. M. – WANDEL, A. P. – YUSAF, T. – AL-LWAYZY, S. – HAMAWAND, I. 2018. Impact of butanol-acetone mixture as a fuel additive on diesel engine performance and emissions. In Fuel, vol. 227, pp. 118–126. DOI: https://doi.org/10.1016/j.fuel.2018.04.091
  3. ALGAYYIM, S. J. M. – WANDEL, A. P. – YUSAF, T. – HAMAWAND, I. 2017. The impact of n-butanol and iso-butanol as components of butanol-acetone (BA) mixture-diesel blend on spray, combustion characteristics, engine performance and emission in direct injection diesel engine. In Energy, vol. 140, part 1, pp. 1074–1086. DOI: https://doi.org/10.1016/j.energy.2017.09.044
  4. ALPTEKIN, E. 2017. Evaluation of ethanol and isopropanol as additives with diesel fuel in a CRDI diesel engine. In Fuel, vol. 205, pp. 161–172. DOI: https://doi.org/10.1016/j.fuel.2017.05.076
  5. AN, H. – YANG, W. M. – CHOU, S. K. – CHUA, K. J. 2012. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions. In Applied Energy, vol. 99, pp. 363–371. DOI: https://doi.org/10.1016/j.apenergy.2012.05.049
  6. ARANSIOLA, E. – BETIKU, E. – IKHUOMOREGBE, D. – OJUMU, T. 2012. Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. In African Journal of Biotechnology, vol. 11, no. 22, pp. 6178–6186. DOI: https://doi.org/10.5897/AJB11.2301
  7. ARAVIND, S. – BARIK, D. – PRAVEENKUMAR, S. – TUDU, K. – DARA, R. N. 2025. Influence of compression ratio variations on hydrogen combustion dynamics in a tri-fuel agricultural diesel engine operating with diesel, algae spirogyra methyl ester, and di-tert-butyl peroxide. In International Journal of Hydrogen Energy, vol. 143, pp. 429–440. DOI: https://doi.org/10.1016/j.ijhydene.2025.01.113 Get rights and content
  8. ASHOK, B. – NANTHAGOPAL, K. – SUBBARAO, R. – JOHNY, A. – MOHAN, A. – TAMILARASU, A. 2017. Experimental studies on the effect of metal oxide and antioxidant additives with Calophyllum Inophyllum Methyl ester in compression ignition engine. In Journal of Cleaner Production, vol. 166, pp. 474–484. DOI: https://doi.org/10.1016/j.jclepro.2017.08.050
  9. ATMANLI, A. 2016. Comparative analyses of diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. In Fuel, vol. 176, pp. 209–215. DOI: https://doi.org/10.1016/j.fuel.2016.02.076
  10. BARI, S. 2014. Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel. In Applied Energy, vol. 124, pp. 35–43. DOI: https://doi.org/10.1016/j.apenergy.2014.03.007
  11. BENCHEIKH, K. – ATABANI, A. E. – SHOBANA, S. – MOHAMMED, M. N. – UĞUZ, G. – ARPA, O. – KUMAR, G. – AYANOĞLU, A. – BOKHARI, A. 2019. Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel– diesel–propanol blends. In Sustainable Energy Technologies and Assessments, vol. 35, pp. 321–334. DOI: https://doi.org/10.1016/j.seta.2019.08.007
  12. BHASKAR, S. V. 2018. Experimental analysis on exhaust emissions of diesel engine using Madhuca Indica biodiesel and its diesel blends. In International Journal for Research in Applied Science & Engineering Technology, vol. 6, no. 1, pp. 3348–3353. DOI: https://doi.org/10.22214/ijraset.2018.1466
  13. BITTLE, J. A. – KNIGHT, B. M. – JACOBS, T. J. 2010. Interesting behavior of biodiesel ignition delay and combustion duration. In Energy & Fuels, vol. 24, no. 8, pp. 4166–4177. DOI: https://doi.org/10.1021/ef1004539
  14. BOHON, M. D. – METZGER, B. A. – LINAK, W. P. – KING, C. J. – ROBERTS, W. L. 2011. Glycerol combustion and emissions. In Proceedings of the Combustion Institute, vol. 33, no. 2, pp. 2717–2724. DOI: https://doi.org/10.1016/j.proci.2010.06.154
  15. CAN, Ö. 2014. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. In Energy Conversion and Management, vol. 87, pp. 676–686. DOI: https://doi.org/10.1016/j.enconman.2014.07.066
  16. CORONADO, C. R. – DE CARVALHO JR, J. A. – SILVEIRA, J. L. 2009. Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market. In Fuel Processing Technology, vol. 90, no. 2, pp. 204–211. DOI: https://doi.org/10.1016/j.fuproc.2008.09.006
  17. DHANASEKARAN, R. – GANESAN, S. – KUMAR, B. R. – SARAVANAN, S. 2019. Utilization of waste cooking oil in a light-duty DI diesel engine for cleaner emissions using bio-derived propanol. In Fuel, vol. 235, pp. 832–837. DOI: https://doi.org/10.1016/j.fuel.2018.08.093
  18. DOĞAN, O. 2011. The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. In Fuel, vol. 90, no. 7, pp. 2467–2472. DOI: https://doi.org/10.1016/j.fuel.2011.02.033
  19. FAIZOLLAHZADEH ARDABILI, S. – NAJAFI, B. – ALIZAMIR, M. – MOSAVI, A. – SHAMSHIRBAND, S. – RABCZUK, T. 2018. Using SVMRSM and ELM-RSM approaches for optimizing the production process of methyl and ethyl esters. In Energies, vol. 11, no. 11, article no. 2889. DOI: https://doi.org/10.3390/en11112889
  20. GHAZANFARI, J. – NAJAFI, B. – FAIZOLLAHZADEH ARDABILI, S. – SHAMSHIRBAND, S. 2017. Limiting factors for the use of palm oil biodiesel in a diesel engine in the context of the ASTM standard. In Cogent Engineering, vol. 4, no. 1, article no. 1411221. DOI: https://doi.org/10.1080/23311916.2017.1411221
  21. GÓMEZ-CUENCA, F. – GÓMEZ-MARÍN, M. – FOLGUERAS-DÍAZ, M. B. 2013. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine. In Energy Conversion and Management, vol. 75, pp. 741–747. DOI: https://doi.org/10.1016/j.enconman.2013.07.012
  22. HERRERO DÁVILA, L. 2013. Chapter 6: Food Waste and Catering Waste; Focus on Valorisation of Used Cooking Oil and Recovered Triglycerides. In KAZMI, A. – SHUTTLEWORTH, P. (Eds.). The Economic Utilisation of Food Co-Products, 246 pp. ISBN 978-1-84973-732-6. DOI: https://doi.org/10.1039/9781849737326-00130
  23. IACONO, G. E. – GURGACZ, F. – BASSEGIO, D. – DE SOUZA, S. N. M. – SECCO, D. 2024. Agricultural tractor engine performance and emissions using biodiesel-ethanol blends. In Engenharia Agrícola, vol. 44, article no. e20230089. DOI: https://doi.org/10.1590/1809-4430-Eng.Agric.v44e20230089/2024
  24. JAMROZIK, A. – TUTAK, W. – PYRC, M. – SOBIEPAŃSKI, M. 2017. Effect of diesel-biodiesel-ethanol blend on combustion, performance, and emissions characteristics on a direct injection diesel engine. In Thermal Science, vol. 21, no. 1, pp. 591–604. DOI: https://doi.org/10.2298/TSCI160913275J
  25. KARABEKTAS, M. – HOSOZ, M. 2009. Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. In Renewable Energy, vol. 34, no. 6, pp. 1554–1559. DOI: https://doi.org/10.1016/j.renene.2008.11.003
  26. KATRYNIOK, B. – PAUL, S. – DUMEIGNIL, F. 2013. Recent developments in the field of catalytic dehydration of glycerol to acrolein. In ACS Catalysis, vol. 3, no. 8, pp. 1819–1834. DOI: https://doi.org/10.1021/cs400354p
  27. KOVÁCS, L. – BOLLÓ, B. – SZABÓ, S. 2024. A complex comparative study of two dissimilar engine valve constructions, for the in-cylinder flow behaviour of a high speed, IC engine. In Acta Polytechnica Hungarica, vol. 21, no. 4.
  28. LA ROSA, A. D. – BANATAO, D. R. – PASTINE, S. J. – LATTERI, A. – CICALA, G. 2016. Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. In Composites Part B: Engineering, vol. 104, pp. 17–25. DOI: https://doi.org/10.1016/j.compositesb.2016.08.015
  29. LARKI, I. – ZAHEDI, A. – ASADI, M. – FOROOTAN, M. M. – FARAJOLLAHI, M. – AHMADI, R. –AHMADI, A. 2023. Mitigation approaches and techniques for combustion power plants flue gas emissions: A comprehensive review. In Science of The Total Environment, vol. 903, article no. 166108. DOI: https://doi.org/10.1016/j.scitotenv.2023.166108
  30. LI, G. – LIU, Z. – LEE, T. H. – LEE, C. F. – ZHANG, C. 2018. Effects of dilute gas on combustion and emission characteristics of a common-rail diesel engine fueled with isopropanol-butanol-ethanol and diesel blends. In Energy Conversion and Management, vol. 165, pp. 373–381. DOI: https://doi.org/10.1016/j.enconman.2018.03.073
  31. MUELLER, C. – BOEHMAN, A. – MARTIN, G. 2009. An experimental investigation of the origin of increased NOx emissions when fueling a heavy-duty compression-ignition engine with soy biodiesel. In SAE International Journal of Fuels and Lubricants, vol. 2, no. 1, pp. 789–816. DOI: https://doi.org/10.4271/2009-01-1792
  32. NADKARNI, R. A. K. 2007. Guide to ASTM Test Methods for the Analysis of Petroleum Products and Lubricants. ASTM Stock No. MNL44--2nd. West Conshohocken, PA, USA : ASTM International, 315 pp. ISBN 978-0-8031-4274-9. Availabe at: https://prime.erpnext.com/files/GuidetoAstmTestMethodsfortheAnalysisofPetroleumProductsandLubricantsSecondEdition.pdf
  33. NAJAFI, B. 2009. Modeling of effect of biodiesel cetane number, density and viscosity on ignition delay. In The Journal of Engine Research, vol. 16, no. 16, pp. 36–42. Available at: https://www.engineresearch.ir/article_697603.html?lang=en
  34. NAJAFI, B. – FAIZOLLAHZADEH ARDABILI, S. – MOSAVI, A. – SHAMSHIRBAND, S. – RABCZUK, T. 2018. An intelligent artificial neural network-response surface methodology method for accessing the optimum biodiesel and diesel fuel blending conditions in a diesel engine from the viewpoint of exergy and energy analysis. In Energies, vol. 11, no. 4, article no. 860. DOI: https://doi.org/10.3390/en11040860
  35. NAKAGAWA, Y. – TOMISHIGE, K. 2011. Heterogeneous catalysis of the glycerol hydrogenolysis. In Catalysis Science & Technology, vol. 1, no. 2, pp. 179–190. DOI: https://doi.org/10.1039/C0CY00054J
  36. NAYAK, S. K. – BEHERA, G. R. – MISHRA, P. C. – KUMAR, A. 2017. Functional characteristics of jatropha biodiesel as a promising feedstock for engine application. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 39, no. 3, pp. 299–305. DOI: https://doi.org/10.1080/15567036.2015.1120826
  37. PAL, A.– VERMA, A.– KACHHWAHA, S. S. – MAJI, S. 2010. Biodiesel production through hydrodynamic cavitation and performance testing. In Renewable Energy, vol. 35, no. 3, pp. 619–624. DOI: https://doi.org/10.1016/j.renene.2009.08.027
  38. PINZI, S. – REDEL-MACÍAS, M. D. – LEIVA-CANDIA, D. E. – SORIANO, J. A. – DORADO, M. P. 2017. Influence of ethanol/diesel fuel and propanol/diesel fuel blends over exhaust and noise emissions. In Energy Procedia, vol. 142, pp. 849–854. DOI: https://doi.org/10.1016/j.egypro.2017.12.136
  39. QASIM, M. – MAHMOOD ANSARI, T. – HUSSAIN, M. 2017. Combustion, performance, and emission evaluation of a diesel engine with biodiesel like fuel blends derived from a mixture of Pakistani waste canola and waste transformer oils. In Energies, vol. 10, no. 7, article no. 1023. DOI: https://doi.org/10.3390/en10071023
  40. SARAVANAN, S. – NAGARAJAN, G. – ANAND, S. – SAMPATH, S. 2012. Correlation for thermal NOx formation in compression ignition (CI) engine fuelled with diesel and biodiesel. In Energy, vol. 42, no. 1, pp. 401–410. DOI: https://doi.org/10.1016/j.energy.2012.03.028
  41. SCHOBERT, H. H. 2013. Chemistry of Fossil Fuels and Biofuels. Cambridge, UK : Cambridge University Press, 497 pp. ISBN 9780511844188. DOI: https://doi.org/10.1017/CBO9780511844188
  42. ŞEN, M. 2019. The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend. In Fuel, vol. 254, article no. 115617. DOI: https://doi.org/10.1016/j.fuel.2019.115617
  43. ŞEN, M. 2024. Optimization of performance and emission of a diesel engine fueled with isopropyl alcohol blends: A comparative ANN-GA and RSM-HCO application. In Engineering Science and Technology, an International Journal, vol. 55, article no. 101733. DOI: https://doi.org/10.1016/j.jestch.2024.101733
  44. SIVALINGAM, S. – HARISH, A. – SELVA, M. R. 2024. Chapter 5: Environmental and health effects of global warming. In Health and Environmental Effects of Ambient Air Pollution, vol. 1, pp. 109–129. DOI: https://doi.org/10.1016/B978-0-443-16088-2.00008-9
  45. THONGCHAI, S. – NILAPHAI, O. – PHANPHATTRAPONG, P. – TONGROON, M. 2024. Effect of the ternary blends (ethanolbiodiesel-diesel) on deterioration of a stationary agricultural engine. In The Journal of Industrial Technology, vol. 20, no. 2, pp. 212–228. Available at: https://ojs.kmutnb.ac.th/index.php/joindtech/article/view/7525/5250
  46. TSAI, J.-H. – CHEN, S.-J. – HUANG, K.-L. – LIN, W.-Y. – LEE, W.-J. – LIN, C.-C. – HSIEH, L.-T. – CHIU, J.-Y. – KUO, W.-C. 2013. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted PM, particulate carbon, and PAHs. In Science of The Total Environment, vol. 466–467, pp. 195–202. DOI: https://doi.org/10.1016/j.scitotenv.2013.07.025
  47. VAN DEN HEEDE, P. – DE BELIE, N. 2012. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’concretes: Literature review and theoretical calculations. In Cement Concrete Composites, vol. 34, no. 4, pp. 431–442. DOI: https://doi.org/10.1016/j.cemconcomp.2012.01.004
  48. XUE, Y. 2015. Energy internet or comprehensive energy network? In Journal of Modern Power Systems and Clean Energy, vol. 3, no. 3, pp. 297–301. DOI: https://doi.org/10.1007/s40565-015-0111-5
  49. YILMAZ, E. – ARSLAN, H. – BIDECI, A. 2019. Environmental performance analysis of insulated composite facade panels using life cycle assessment (LCA). In Construction Building Materials, vol. 202, pp. 806–813. DOI: https://doi.org/10.1016/j.conbuildmat.2019.01.057
  50. ZHENG, B. – CHEN, J.-Y. – SONG, Z. – MAO, E. – ZHOU, Q. – LUO, Z. – LIU, K. 2022. Prediction and optimization of emission in an agricultural harvest engine with biodiesel-diesel blends by a method of ANN and CMA-ES. In Computers and Electronics in Agriculture, vol. 197, article no. 106903. DOI: https://doi.org/10.1016/j.compag.2022.106903
Language: English
Page range: 248 - 257
Published on: Nov 3, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Sina Ardabili, Aziz Babapoor, Amir Mosavi, Ardavan Delavar, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.