References
- BAHETI, H. – THAKARE, A. – BHOPLE, Y. – DAREKAR, S. – DODMANI, O. 2023. Tomato plant leaf disease detection using Inception v3. In KULKARNI, A. J. – MIRJALILI, S. – UDGATA, S.K. (eds.). Intelligent Systems and Applications. Lecture Notes in Electrical Engineering, vol. 959. Singapore : Springer, pp. 49–60. eISBN 978-981-19-6581-4. DOI: https://doi.org/10.1007/978-981-19-6581-4_5
- CHLAP, P. – MIN, H. – VANDENBERG, N. – DOWLING, J. – HOLLOWAY, L. – HAWORTH, A. 2021. A review of medical image data augmentation techniques for deep learning applications. In Journal of Medical Imaging and Radiation Oncology, vol. 65, no. 5, pp. 545–563. DOI: https://doi.org/10.1111/1754-9485.13261
- CHEN, J. – ZHANG, D. – SUZAUDDOLA, M. – NANEHKARAN, Y. A. – SUN, Y. 2020. Identification of plant disease images via a squeeze-and-excitation MobileNet model and twice transfer learning. In IET Image Processing, vol. 15, no. 5, pp. 1115–1127. DOI: https://doi.org/10.1049/ipr2.12090
- CHOLLET, F. 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807. DOI: https://doi.org/10.1109/CVPR.2017.195
- DEMILIE, W. B. 2024. Plant disease detection and classification techniques: A comparative study of the performances. In Journal of Big Data, vol. 11, article no. 5. DOI: https://doi.org/10.1186/s40537-023-00863-9
- FERENTINOS, K. P. 2018. Deep learning models for plant disease detection and diagnosis. In Computers and Electronics in Agriculture, vol. 145, pp. 311–318. DOI: https://doi.org/10.1016/j.compag.2018.01.009
- HE, K. – ZHANG, X. – REN, S. – SUN, J. 2016. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. DOI: https://doi.org/10.1109/CVPR.2016.90
- HOWARD, A. G. – ZHU, M. – CHEN, B. – KALENICHENKO, D. – WANG, W. – WEYAND, T. – ANDREETTO, M. – ADAM, H. 2017. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. DOI: https://doi.org/10.48550/arXiv.1704.04861
- HUGHES, D. P. – SALATHÉ, M. 2015. An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060. DOI: https://doi.org/10.48550/arXiv.1511.08060
- IFTIKHAR, M. – KANDHRO, I. A. – KAUSAR, N. – KEHAR, A. – UDDIN, M. – DANDOUSH, A. 2024. Plant disease management: A fine-tuned enhanced CNN approach with mobile app integration for early detection and classification. In Artificial Intelligence Review, vol. 57, article no. 167. DOI: https://doi.org/10.1007/s10462-024-10809-z
- JOSEPH, D. S. – PAWAR, P. M. – PRAMANIK, R. 2023. Intelligent plant disease diagnosis using convolutional neural network: A review. In Multimedia Tools and Applications, vol. 82, pp. 21415–21481. DOI: https://doi.org/10.1007/s11042-022-14004-6
- KOONCE, B. 2021. ResNet 50. In Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization. Berkeley, CA : Apress, pp. 63–72. eISBN 978-1-4842-6168-2. DOI: https://doi.org/10.1007/978-1-4842-6168-2_6
- KRISHNA, M. S. – MACHADO, P. – OTUKA, R. I. – YAHAYA, S. W. – NEVES DOS SANTOS, F. – IHIANLE, I. K. 2025. Plant leaf disease detection using deep learning: A multi-dataset approach. In Multidisciplinary Scientific Journal vol. 8, no. 1, article no. 4. DOI: https://doi.org/10.3390/j8010004
- PANDIAN, J. A. – KUMAR, V. D. – GEMAN, O. – HNATIUC, M. – ARIF, M. – KANCHANADEVI, K. 2022. Plant disease detection using deep convolutional neural network. In Applied Sciences, vol. 12, no. 14, article no. 6982. DOI: https://doi.org/10.3390/app12146982
- MAHARANA, K. – MONDAL, S. – NEMADE, B. 2022. A review: Data pre-processing and data augmentation techniques. In Global Transitions Proceedings, vol. 91, no. 1, pp. 91–99. DOI: https://doi.org/10.1016/j.gltp.2022.04.020
- PUJARI, J. D. – YAKKUNDIMATH, R. – BYADGI, A. S. 2014. Recognition and classification of produce affected by identically looking powdery mildew disease. In Acta Technologica Agriculturae, vol. 17, no. 2, pp. 29–34. DOI: https://doi.org/10.2478/ata-2014-0007
- RICHARD, B. – QI, A. – FITT, B. D. L. 2022. Control of crop diseases through Integrated Crop Management to deliver climate-smart farming systems for low- and high- input crop production. In Plant Pathology, vol. 71, no. 1, pp. 187–206. DOI: https://doi.org/10.1111/ppa.13493
- SALEEM, M. H. – POTGIETER, J. – ARIF, K. M. 2019. Plant disease detection and classification by deep learning. In Plants, vol. 8, no. 11, article no. 468. DOI: https://doi.org/10.3390/plants8110468
- SARKAR, C. – GUPTA, D. – GUPTA, U. – HAZARIKA, B. B. 2023. Leaf disease detection using machine learning and deep learning: Review and challenges. In Applied Soft Computing, vol. 145, article no. 110534. DOI: https://doi.org/10.1016/j.asoc.2023.110534
- SHI, T. – LIU, Y. – ZHENG, X. – HU, K. – HUANG, H. – LIU, H. – HUANG, H. 2023. Recent advances in plant disease severity assessment using convolutional neural networks. In Scientific Reports, vol. 13, article no. 2336. DOI: https://doi.org/10.1038/s41598-023-29230-7
- SHINDE, N. – AMBHAIKAR, A. 2024. Fine-tuned Xception model for potato leaf disease classification. In TANWAR, S. – SINGH, P. K. – GANZHA, M. – EPIPHANIOU, G. (eds). Proceedings of the Fifth International Conference on Computing, Communications, and Cyber-Security. IC4S 2023. Lecture Notes in Networks and Systems, vol. 991. Singapore : Springer, pp. 663–676. eISBN 978-981-97-2550-2. DOI: https://doi.org/10.1007/978-981-97-2550-2_47
- SZEGEDY, C. – LIU, W. – JIA, Y. – SERMANET, P. – REED, S. – ANGUELOV, D. – ERHAN, D. – VANHOUCKE, V. – RABINOVICH, A. 2015. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. DOI: https://doi.org/10.1109/CVPR.2015.7298594
- TAN, M. – LE, Q. 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 6105–6114.
- TODA, Y. – OKURA, F. 2019. How convolutional neural networks diagnose plant disease. In Plant Phenomics, vol. 2019, article no. 9237136. DOI: https://doi.org/10.34133/2019/9237136
- YADAV, A. – THAKUR, U. – SAXENA, R. – PAL, V. – BHATEJA, V. – LIN, J. C. 2022. AFD-Net: Apple foliar disease multi classifcation using deep learning on plant pathology dataset. In Plant and Soil, vol. 477, no. 1, pp. 595–611. DOI: https://doi.org/10.1007/s11104-022-05407-3