Have a personal or library account? Click to login
Design, Fabrication, and Performance Evaluation of Solar Drying Chamber Used for Apple Slices Cover

Design, Fabrication, and Performance Evaluation of Solar Drying Chamber Used for Apple Slices

Open Access
|Aug 2025

References

  1. ATALAY, H. – CANKURTARAN, E. 2021. Energy, exergy, exergo-economic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium. In Energy, vol. 216, article no. 119221. DOI: https://doi.org/10.1016/j.energy.2020.119221
  2. BOUHDJAR, A. – SEMAI, H. – BOUKADOUM, A. – ELMOKRETAR, S. – MAZARI, A. – SEMIANI, M. – AMARI, A. 2020. Improved procedure for natural convection garlic drying. In Acta Technologica Agriculturae, vol. 23, no. 2, pp. 92–98. DOI: https://doi.org/10.2478/ata-2020-0015
  3. DOYMAZ, I. 2007. Air-drying characteristics of tomatoes. In Journal of Food Engineering, vol. 78, no. 4, pp. 1291–1297. DOI: https://doi.org/10.1016/j.jfoodeng.2005.12.047
  4. DOYMAZ, I. 2013. Experimental study on drying of pear slices in a convective dryer. In International Journal of Food Science and Technology, vol. 48, no. 9, pp. 1909–1915. DOI: https://doi.org/10.1111/ijfs.12170
  5. DOYMAZ, I. – ISMAIL, O. 2011. Drying characteristics of sweet cherry. In Food and Bioproducts Processing, vol. 89, no. 1, pp. 31–38. DOI: https://doi.org/10.1016/j.fbp.2010.03.006
  6. EKKA, J. P. – PALANISAMY, M. 2020. Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. In Thermal Science and Engineering Progress, vol. 19, article no. 100607. DOI: https://doi.org/10.1016/j.tsep.2020.100607
  7. EL-BELTAGY, A. – GAMEA, G. R. – ESSA, A. H. A. 2007. Solar drying characteristics of strawberry. In Journal of Food Engineering, vol. 78, no. 2, pp. 456–464. DOI: https://doi.org/10.1016/j.jfoodeng.2005.10.015
  8. ERBAY, Z. – ICIER, F. 2010. A review of thin layer drying of foods: Theory, modeling, and experimental results. In Critical Reviews in Food Science and Nutrition, vol. 50, no. 5, pp. 441–464. DOI: https://doi.org/10.1080/10408390802437063
  9. FORSON, F. K. – NAZHA, M. A. A. – AKUFFO, F. O. – RAJAKARUNA, H. 2007. Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb. In Renewable Energy, vol. 32, no. 14, pp. 2306–2319. DOI: https://doi.org/10.1016/j.renene.2006.12.003
  10. HASAN, M. – LANGRISH, T. A. G. 2016. Development of a sustainable methodology for life-cycle performance evaluation of solar dryers. In Solar Energy, vol. 135, pp. 1–13. DOI: https://doi.org/10.1016/j.solener.2016.05.036
  11. HASSAN, A. – NIKBAKHT, A. M. – FAWZIA, S. – YARLAGADDA, P. K. – KARIM, A. 2023. Assessment of thermal and environmental benchmarking of a solar dryer as a pilot zero-emission drying technology. In Case Studies in Thermal Engineering, vol. 48, article no. 103084. DOI: https://doi.org/10.1016/j.csite.2023.103084
  12. LINGAYAT, A. – CHANDRAMOHAN, V. P. – RAJU, V. R. K. 2017. Design, development and performance of indirect type solar dryer for banana drying. In Energy Procedia, vol. 109, pp. 409–416. DOI: https://doi.org/10.1016/j.egypro.2017.03.041
  13. MEISAMI-ASL, E. – RAFIEE, S. 2009. Mathematical modeling of kinetics of thin-layer drying of apple (var. Golab). In Agricultural Engineering International: The CIGR Ejournal, vol. 11, article no. 1185. Available at: https://cigrjournal.org/index.php/Ejounral/article/view/1185/1228
  14. MELLALOU, A. – RIAD, W. – BACAOUI, A. – OUTZOURHIT, A. 2023. Experimental investigations on drying kinetics and modeling of two-phase olive pomace dried in a hybrid solar greenhouse dryer. In Journal of Thermal Analysis and Calorimetry, vol. 148, no. 12, pp. 5471–5483. DOI: https://doi.org/10.1007/s10973-023-12063-x
  15. MUGI, V. R. – CHANDRAMOHAN, V. P. 2021. Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection. In Thermal Science and Engineering Progress, vol. 24, article no. 100950. DOI: https://doi.org/10.1016/j.tsep.2021.100950
  16. MUSEMBI, M. N. – KIPTOO, K. S. – YUICHI, N. 2016. Design and analysis of solar dryer for mid-latitude region. In Energy Procedia, vol. 100, pp. 98–110. DOI: https://doi.org/10.1016/j.egypro.2016.10.145
  17. ODEWOLE, M. M. – FALUA, K. J. 2021. Modelling of thin-layer drying of osmo-pre-treated red bell pepper. In Acta Technologica Agriculturae, vol. 24, no. 2, pp. 67–71. DOI: https://doi.org/10.2478/ata-2021-0011
  18. RABHA, D. K. – MUTHUKUMAR, P. – SOMAYAJI, C. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. In Renewable Energy, vol. 105, pp. 764–773. DOI: https://doi.org/10.1016/j.renene.2017.01.007
  19. RAJESH, S. – SEKAR, S. – SEKAR, S. D. – MADHANKUMAR, S. 2024. Drying kinetics, energy statistical, economic, and proximate analysis of a greenhouse dryer using different glazing materials for Coccinia grandis drying. In Solar Energy, vol. 284, article no. 113047. DOI: https://doi.org/10.1016/j.solener.2024.113047
  20. ULLAH, I. – HANIF, M. – BASIT, A. – KHATTAK, M. K. – SHAH, S. T. – ULLAH, A. – LODHI, K. – UL-HAQ, I. – ULLAH, I. – AHMAD, M. – ALI, I. – ALI, F. – MOHAMED, H. I. 2022. Performance of two terms exponential model on the drying kinetics of solar-dried tomatoes (Lycopersicum esculentum L.) treated with and without chemical preservatives. In Egyptian Journal of Chemistry, vol. 65, no. 3, pp. 455–464. DOI: https://doi.org/10.21608/ejchem.2021.93566.4414
Language: English
Page range: 141 - 148
Published on: Aug 21, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Halefom Kidane, Istvan Farkas, Janos Buzás, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.