References
- ATALAY, H. – CANKURTARAN, E. 2021. Energy, exergy, exergo-economic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium. In Energy, vol. 216, article no. 119221. DOI: https://doi.org/10.1016/j.energy.2020.119221
- BOUHDJAR, A. – SEMAI, H. – BOUKADOUM, A. – ELMOKRETAR, S. – MAZARI, A. – SEMIANI, M. – AMARI, A. 2020. Improved procedure for natural convection garlic drying. In Acta Technologica Agriculturae, vol. 23, no. 2, pp. 92–98. DOI: https://doi.org/10.2478/ata-2020-0015
- DOYMAZ, I. 2007. Air-drying characteristics of tomatoes. In Journal of Food Engineering, vol. 78, no. 4, pp. 1291–1297. DOI: https://doi.org/10.1016/j.jfoodeng.2005.12.047
- DOYMAZ, I. 2013. Experimental study on drying of pear slices in a convective dryer. In International Journal of Food Science and Technology, vol. 48, no. 9, pp. 1909–1915. DOI: https://doi.org/10.1111/ijfs.12170
- DOYMAZ, I. – ISMAIL, O. 2011. Drying characteristics of sweet cherry. In Food and Bioproducts Processing, vol. 89, no. 1, pp. 31–38. DOI: https://doi.org/10.1016/j.fbp.2010.03.006
- EKKA, J. P. – PALANISAMY, M. 2020. Determination of heat transfer coefficients and drying kinetics of red chilli dried in a forced convection mixed mode solar dryer. In Thermal Science and Engineering Progress, vol. 19, article no. 100607. DOI: https://doi.org/10.1016/j.tsep.2020.100607
- EL-BELTAGY, A. – GAMEA, G. R. – ESSA, A. H. A. 2007. Solar drying characteristics of strawberry. In Journal of Food Engineering, vol. 78, no. 2, pp. 456–464. DOI: https://doi.org/10.1016/j.jfoodeng.2005.10.015
- ERBAY, Z. – ICIER, F. 2010. A review of thin layer drying of foods: Theory, modeling, and experimental results. In Critical Reviews in Food Science and Nutrition, vol. 50, no. 5, pp. 441–464. DOI: https://doi.org/10.1080/10408390802437063
- FORSON, F. K. – NAZHA, M. A. A. – AKUFFO, F. O. – RAJAKARUNA, H. 2007. Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb. In Renewable Energy, vol. 32, no. 14, pp. 2306–2319. DOI: https://doi.org/10.1016/j.renene.2006.12.003
- HASAN, M. – LANGRISH, T. A. G. 2016. Development of a sustainable methodology for life-cycle performance evaluation of solar dryers. In Solar Energy, vol. 135, pp. 1–13. DOI: https://doi.org/10.1016/j.solener.2016.05.036
- HASSAN, A. – NIKBAKHT, A. M. – FAWZIA, S. – YARLAGADDA, P. K. – KARIM, A. 2023. Assessment of thermal and environmental benchmarking of a solar dryer as a pilot zero-emission drying technology. In Case Studies in Thermal Engineering, vol. 48, article no. 103084. DOI: https://doi.org/10.1016/j.csite.2023.103084
- LINGAYAT, A. – CHANDRAMOHAN, V. P. – RAJU, V. R. K. 2017. Design, development and performance of indirect type solar dryer for banana drying. In Energy Procedia, vol. 109, pp. 409–416. DOI: https://doi.org/10.1016/j.egypro.2017.03.041
- MEISAMI-ASL, E. – RAFIEE, S. 2009. Mathematical modeling of kinetics of thin-layer drying of apple (var. Golab). In Agricultural Engineering International: The CIGR Ejournal, vol. 11, article no. 1185. Available at: https://cigrjournal.org/index.php/Ejounral/article/view/1185/1228
- MELLALOU, A. – RIAD, W. – BACAOUI, A. – OUTZOURHIT, A. 2023. Experimental investigations on drying kinetics and modeling of two-phase olive pomace dried in a hybrid solar greenhouse dryer. In Journal of Thermal Analysis and Calorimetry, vol. 148, no. 12, pp. 5471–5483. DOI: https://doi.org/10.1007/s10973-023-12063-x
- MUGI, V. R. – CHANDRAMOHAN, V. P. 2021. Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection. In Thermal Science and Engineering Progress, vol. 24, article no. 100950. DOI: https://doi.org/10.1016/j.tsep.2021.100950
- MUSEMBI, M. N. – KIPTOO, K. S. – YUICHI, N. 2016. Design and analysis of solar dryer for mid-latitude region. In Energy Procedia, vol. 100, pp. 98–110. DOI: https://doi.org/10.1016/j.egypro.2016.10.145
- ODEWOLE, M. M. – FALUA, K. J. 2021. Modelling of thin-layer drying of osmo-pre-treated red bell pepper. In Acta Technologica Agriculturae, vol. 24, no. 2, pp. 67–71. DOI: https://doi.org/10.2478/ata-2021-0011
- RABHA, D. K. – MUTHUKUMAR, P. – SOMAYAJI, C. 2017. Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger. In Renewable Energy, vol. 105, pp. 764–773. DOI: https://doi.org/10.1016/j.renene.2017.01.007
- RAJESH, S. – SEKAR, S. – SEKAR, S. D. – MADHANKUMAR, S. 2024. Drying kinetics, energy statistical, economic, and proximate analysis of a greenhouse dryer using different glazing materials for Coccinia grandis drying. In Solar Energy, vol. 284, article no. 113047. DOI: https://doi.org/10.1016/j.solener.2024.113047
- ULLAH, I. – HANIF, M. – BASIT, A. – KHATTAK, M. K. – SHAH, S. T. – ULLAH, A. – LODHI, K. – UL-HAQ, I. – ULLAH, I. – AHMAD, M. – ALI, I. – ALI, F. – MOHAMED, H. I. 2022. Performance of two terms exponential model on the drying kinetics of solar-dried tomatoes (Lycopersicum esculentum L.) treated with and without chemical preservatives. In Egyptian Journal of Chemistry, vol. 65, no. 3, pp. 455–464. DOI: https://doi.org/10.21608/ejchem.2021.93566.4414