Have a personal or library account? Click to login
Analysis of Opportunities for Agricultural Area Surveillance by UAV and Satellite in Precision Agriculture Cover

Analysis of Opportunities for Agricultural Area Surveillance by UAV and Satellite in Precision Agriculture

Open Access
|May 2025

References

  1. ARANGUREN, M. – CASTELLÓN, A. – AIZPURUA, A. 2020. Wheat yield estimation with NDVI values using a proximal sensing tool. In Remote Sensing, vol. 12, no. 17, article no. 2749. DOI: https://doi.org/10.3390/rs12172749
  2. ASHOURLOO, D. – MOBASHERI, M. R. – HUETE, A. 2014. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. In Remote Sensing, vol. 6, no. 6, pp. 5107–5123. DOI: https://doi.org/10.3390/rs6065107
  3. ATANASOV, A. – BANKOVA, A. – ZHECHEVA, G. 2023a. Observation of the vegetation processes of agricultural crops using small unmanned aerial vehicles in Dobrudja region. In Bulgarian Journal of Agricultural Science, vol. 29, no. 1, pp. 176–181. DOI: https://agrojournal.org/29/01-21.html
  4. ATANASOV, A. – BANKOVA, A. – ZHECHEVA, G. 2023b. Vegetation data processes registered by remote sensing with a small aerial vehicle. In Bulgarian Journal of Agricultural Science, vol. 29 no. 3, pp. 564–569. DOI: https://agrojournal.org/29/03-22.html
  5. ATANASOV, A. – MIHOVA, G. – MIHAYLOV, R. 2022. Applicability and efficiency of remote sensing of agricultural areas. In Bulgarian Journal of Agricultural Science, vol. 28 no. 5, pp. 933–943. DOI: http://www.agrojournal.org/28/05-21.pdf
  6. AGROMONITORING. 2024. Available online at: https://home.agromonitoring.com/
  7. BARKER, J. – ZHANG, N. – SHARON, J. – STEEVES, R. – WANG, X. – WEI, Y. – POLAND, J. 2016. Development of a field-based high-throughput mobile phenotyping platform. In Computers and Electronics in Agriculture, vol. 122, pp. 74–85. DOI: https://doi.org/10.1016/j.compag.2016.01.017
  8. BELLVERT, J. – MARSAL, J. – GIRONA, J. – GONZALEZ-DUGO, V. – FERERES, E. – USTIN, S. L. – ZARCO-TEJADA, P. J. 2016. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and Saturn peach orchards. In Remote Sensing, vol. 8, no. 1, article no. 39. DOI: https://doi.org/10.3390/rs8010039
  9. CAA. 2024. Available online at: https://www.caa.bg/bg
  10. CABRERA-BOSQUET, L. – MOLERO, G. – STELLACCI, A. – BORT, J. – NOGUÉS, S. – ARAUS, J. 2011. NDVI as a potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. In Cereal Research Communications, vol. 39, no. 1, pp. 147–159. DOI: https://doi.org/10.1556/crc.39.2011.1.15
  11. DEERY, D. M. – REBETZKE, G. J. – JIMENEZ-BERNI, J. A. – JAMES, R. A. – CONDON, A. G. – BOVILL, W. D. – HUTCHINSON, P. – SCARROW, J. – DAVY, R. – FURBANK, R. T. 2016. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. In Frontiers in Plant Science, vol. 7, article no. 1808. DOI: https://doi.org/10.3389/fpls.2016.01808
  12. DEVKOTA, R. – PANT, P. L. – GARTAULA, H. N. – PATEL, K. – GAUCHAN, D. – HAMBLY-ODAME, H. – THAPA, B. – RAIZADA, M. N. 2020. Responsible agricultural mechanization innovation for the sustainable development of Nepal’s hillside farming system. In Sustainability, vol. 12, no. 1, article no. 374. DOI: https://doi.org/10.3390/su12010374
  13. GOLZARIAN, M. R. – FRICK, R. A. – RAJENDRAN, K. – BERGER, B. – ROY, S. – TESTER, M. – LUN, D. S. 2011. Accurate inference of shoot biomass from high-throughput images of cereal plants. In Plant Methods, vol. 7, article no. 2. DOI: https://doi.org/10.1186/1746-4811-7-2
  14. GUO, Q. – WU, F. – PANG, S. – ZHAO, X. – CHEN, L. – LIU, J. – XUE, B. – XU, G. – LI, L. – JING, H. – CHU, C. 2018. Crop 3D – a LiDAR based platform for 3D high-throughput crop phenotyping. In Science China Life Sciences, vol. 61, pp. 328–339. DOI: https://doi.org/10.1007/s11427-017-9056-0
  15. JIANG, L. – SUN, L. – YE, M. – WANG, J. – WANG, Y. – BOGARD, M. – LACAZE, X. – FOURNIER, A. – BEAUCHÊNE, K. – GOUACHE, D. – WU, R. 2019. Functional mapping of N deficiency-induced response in wheat yield-component traits by implementing high-throughput phenotyping. In The Plant Journal, vol. 97, no. 6, pp. 1105–1119. DOI: https://doi.org/10.1111/tpj.14186
  16. JIN, X. – ZARCO-TEJADA, P. J. – SCHMIDHALTER, U. – REYNOLDS, M. P. – HAWKESFORD, M. J. – VARSHNEY, R. K. – YANG, T. – NIE, C. – LI, Z. – MING, B. – XIAO, Y. – XIE, Y. – LI, S. 2021. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. In IEEE Geoscience and Remote Sensing Magazine, vol. 9, no. 1, pp. 200–231. DOI: https://doi.org/10.1109/MGRS.2020.2998816
  17. MANSOURIALAM, A. – RASEKH, M. – ARDABILI, S. – DADKHAH, M. – MOSAVI, A. 2024. Hyperspectral method integrated with machine learning to predict the acidity and soluble solid content values of kiwi fruit during the storage period. In Acta Technologica Agriculturae, vol. 27, no. 4, pp. 187–193. DOI: https://doi.org/10.2478/ata-2024-0025
  18. MATESE, A. – DI GENNARO, S. F. 2018. Practical applications of a multisensor UAV platform based on multispectral, thermal and RGB high resolution images in precision viticulture. In Agriculture, vol. 8, no. 7, article no. 116. DOI: https://doi.org/10.3390/agriculture8070116
  19. MATESE, A. – TOSCANO, P. – DI GENNARO, S. F. – GENESIO, L. – VACCARI, F. P. – PRIMICERIO, J. – BELLI, C. – ZALDEI, A. – BIANCONI, R. – GIOLI, B. 2015. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. In Remote Sensing, vol. 7, no. 3, pp. 2971–2990. DOI: https://doi.org/10.3390/rs70302971
  20. MAPIR. 2024. Available online at: https://www.mapir.camera/en-gb/collections/survey3/
  21. PHANG, S. K. – CHIANG, T. H. A. – HAPPONEN, A. – CHANG, M. M. L. 2023. From satellite to UAV-based remote sensing: A review on precision agriculture. In IEEE Access, vol. 11, pp. 127057–127076. DOI: https://doi.org/10.1109/ACCESS.2023.3330886
  22. PIX4D. 2024a. Available online at: https://www.pix4d.com/product/pix4dcapture/
  23. PIX4D. 2024. Available online at: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/
  24. POBLETE-ECHEVERRÍA, C. – OLMEDO, G. F. – INGRAM, B. – BARDEEN, M. 2017. Detection and segmentation of vine canopy in ultra-high spatial resolution RGB imagery obtained from unmanned aerial vehicle (UAV): A case study in a commercial vineyard. In Remote Sensing, vol. 9, no. 3, article no. 268. DOI: https://doi.org/10.3390/rs9030268
  25. RAO, U. R. – DEEPAK, B. B. V. L. 2018. Review on application of drone system in precision agriculture. In Procedia Computer Science, vol. 133, pp. 502–509. DOI: https://doi.org/10.1016/j.procs.2018.07.063
  26. ROMBOLI, Y. – DI GENNARO, S. F. – MANGANI, S. – BUSCIONI, G. – MATESE, A. – GENESIO, L. – VINCENZINI, M. 2017. Vine vigour modulates bunch microclimate and affects the composition of grape and wine flavonoids: An unmanned aerial vehicle approach in a Sangiovese vineyard in Tuscany. In Australian Journal of Grape and Wine Research, vol. 23, no. 3, pp. 368–377. DOI: https://doi.org/10.1111/ajgw.12293
  27. ROUSE, J. W. – HAAS, R. H. – SCHELL, J. A. – DEERING, D. W. – HARLAN, J. C. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Report. Greenbelt, MD : NASA/GSFC, 390 pp.
  28. SINGH, A. – GANAPATHYSUBRAMANIAN, B. – SINGH, A. K. – SARKAR, S. 2016. Machine learning for high-throughput stress phenotyping in plants. In Trends in Plants Science, vol. 21, no. 2, pp. 110–124. DOI: https://doi.org/10.1016/j.tplants.2015.10.015
  29. SULTANA, S. R. – ALI, A. – AHMAD, A. – MUBEEN, M. – ZIA-UL-HAQ, M. – AHMAD, S. – ERCISLI, S. – JAAFAR, H. Z. E. 2014. Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan. In The Scientific World Journal, vol. 2014, no. 1, article no. 725326. DOI: https://doi.org/10.1155/2014/725326
  30. SUN, W. – DU, Q. 2018. Graph-regularized fast and robust principal component analysis for hyperspectral band selection. In IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 6, pp. 3185–3195. DOI: https://doi.org/10.1109/TGRS.2018.2794443
  31. ONESOIL. 2024. Available online at: https://onesoil.ai
  32. VAN DER WAL, T. – ABMA, B. – VIGURIA, A. – PRÉVINAIRE, E. – ZARCOTEJADA, P. J. – SERRUYS, P. – VAN VALKENGOED, E. – VAN DER VOET, P. 2013. Fieldcopter: unmanned aerial systems for crop monitoring services. In: STAFFORD, J. V. (ed.) Precision Agriculture ’13. Wageningen : Wageningen Academic Publishers, 823 pp. ISBN 978-90-8686-778-3. DOI: https://doi.org/10.3920/978-90-8686-778-3
  33. VANNOPPEN, A. – GOBIN, A. – KOTOVA, L. – TOP, S. – DE CRUZ, L. – VIKSNA, A. – ANISKEVICH, S. – BOBYLEV, L. – BUNTEMEYER, L. – CALUWAERTS, S. – DE TROCH, R. – GNATIUK, N. – HAMDI, R. – REMEDIO, A. R. – SAKALLI, A. – VAN DE VYVER, H. – VAN SCHAEYBROECK, B. – TERMONIA, P. 2020. Wheat yield estimation from NDVI and regional climate models in Latvia. In Remote Sensing, vol. 12, no. 14, article no. 2206. DOI: https://doi.org/10.3390/rs12142206
  34. XIE, Q. – HUANG, W. – DASH, J. – SONG, X. – HUANG, L. – ZHAO, J. – WANG, R. 2015. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. In Advances in Space Research, vol. 56, no. 11, pp. 2365–2373. DOI: https://doi.org/10.1016/j.asr.2015.09.022
  35. ZHU, M. – ZHANG, J. – ZHU, L. 2021. Variations in growing season NDVI and its sensitivity to climate change responses to green development in mountainous areas. In Frontiers in Environmental Science, vol. 9. DOI: https://doi.org/10.3389/fenvs.2021.678450
Language: English
Page range: 88 - 96
Published on: May 15, 2025
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Asparuh I. Atanasov, Atanas Z. Atanasov, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.