References
- ARPINO, F. – CORTELLESSA, G. – GROSSI, G. – NAGANO, H. 2022. A Eulerian-Lagrangian approach for the non-isothermal and transient CFD analysis of the aerosol airborne dispersion in a car cabin. In Building and Environment, vol. 209, article no. 108648. DOI: https://doi.org/10.1016/j.buildenv.2021.108648
- BARI, D. S. – ALDOSKY, H. Y. Y. – TRONSTAD, C. – KALVØY, H. – MARTINSEN, Ø. G. 2018. Electrodermal responses to discrete stimuli measured by skin conductance, skin potential, and skin susceptance. In Skin Research & Technology, vol. 24, no. 1, pp. 108–116. DOI: https://doi.org/10.1111/srt.12397
- BELOEV, I. – KINANEVA, D. – GEORGIEV, G. – HRISTOV, G. – ZAHARIEV, P. 2021. Artificial intelligence-driven autonomous robot for precision agriculture. In Acta Technologica Agriculturae, vol. 24, no. 1, pp. 48–54. DOI: https://doi.org/10.2478/ata-2021-0008
- BUCHECKER, F. – LOOS, H. M. – BUETTNER, A. 2022. Smells like new car or rather an old carriage? Resolution of the decay behaviour of odorants in vehicle cabin during usage. In Indoor Air, vol. 32, article no. e13112. DOI: https://doi.org/10.1111/ina.13112
- D‘ANGELO, L. T. – LÜTH, T. C. 2012. Integrated systems for distraction – free vital signs measurement in vehicles. In Auto Tech Review, vol. 1, pp. 34–38. DOI: https://doi.org/10.1365/s40112-012-0121-x
- DOBERENZ, S. – ROTH, W. T. – WOLLBURG, E. – BREUNINGER, C. – KIM, S. 2010. Twenty-four hour skin conductance in panic disorder. In Journal of Psychiatric Research, vol. 44, no. 16, pp. 1137–1147. DOI: https://doi.org/10.1016/j.jpsychires.2010.04.012
- DOLINAY, J. – DOSTÁLEK, P. – VAŠEK, V. 2021. Advanced debugger for Arduino. In International Journal of Advanced Computer Science and Applications (IJACSA), vol. 12, no. 2, pp. 30–36. DOI: https://doi.org/10.14569/IJACSA.2021.0120204
- HAMEED, S. – JAFRI, N. – RASHID, D. – SHOAIB, F. 2019. Arduino based radar system. In 3C Technologia, vol. 2019, special issue, pp. 157–166. DOI: https://doi.org/10.17993/3ctecno.2019.specialissue.14
- HE, L. – LI, P. – ZHANG, Y. – JING, H. – GU, Z. 2024. Intelligent control of electric vehicle air conditioning system based on deep reinforcement learning. In Applied Thermal Engineering, vol. 245, article no. 122817. DOI: https://doi.org/10.1016/j.applthermaleng.2024.122817
- HERCEG, DO. – HERCEG, DE. 2020. Arduino and numerical mathematics. In Informatics in Education, vol. 19, no. 2, pp. 239–256. DOI: https://doi.org/10.15388/infedu.2020.12
- HONG, K. H. – LEE, S. M. – LIM, Y. G. – PARK, K. S. 2012. Measuring skin conductance over clothes. In Medical & Biological Engineering & Computing, vol. 50, pp. 1155–1161. DOI: https://doi.org/10.1007/s11517-012-0926-4
- KOUSIS, I. – MANNI, M. – PISELLO, A. L. 2022. Environmental mobile monitoring of urban microclimates: A review. In Renewable and Sustainable Energy Reviews, vol. 169, article no. 112847. DOI: https://doi.org/10.1016/j.rser.2022.112847
- KRISTANTO, D. – LEEPHAKPREEDA, T. 2018. Effective dynamic prediction of air conditions within car cabin via bilateral analyses of theoretical models and artificial neural networks. In Journal of Thermal Science and Technology, vol. 13, no. 2, article no. 17-00536. DOI: https://doi.org/10.1299/JTST.2018JTST0020
- MARTIN, S. – FERNANDEZ-PACHECO, A. – RUIPÉREZ-VALIENTE, J. A. – CARRO, G. – CASTRO, M. 2021. Remote experimentation through Arduino-based remote laboratories. In IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 16, no. 2, pp. 180–186. DOI: https://doi.org/10.1109/RITA.2021.3089916
- MEHEL, A. – CAVELLIN, L. D. – JOLY, F. – SIOUTAS, C. – MURZYN, F. – CUVELIER, P. – BAUDIC, A. 2023. On-board measurements using two successive vehicles to assess in-cabin concentrations of on-road pollutants. In Atmospheric Pollution Research, vol. 14, no. 2, article no. 101673. DOI: https://doi.org/10.1016/j.apr.2023.101673
- MERCIER, M. R. – DUBARRY, A.-S. – TADEL, F. – AVANZINI, P. – AXMACHER, N. CELLIER, D. – DEL VECCHIO, M. – HAMILTON, L. S. – HERMES, D. – KAHANA, M. J. – KNIGHT, R. T. – LLORENS, A. – MEGEVAND, P. – MELLONI, L. – MILLER, K. J. – PIAI, V. – PUCE, A. – RAMSEY, N. F. – SCHWIEDRZIK, C. M. – SMITH, S. E. – OOSTENVELD, R. 2022. Advances in human intracranial electroencephalography research, guidelines and good practices. In NeuroImage, vol. 260, article no. 119438. DOI: https://doi.org/10.1016/j.neuroimage.2022.119438
- MONTAGU, J. D. 1964. The psycho-galvanic reflex: A comparison of d.c. and a.c. methods of measurement. In Journal of Psychosomatic Research, vol. 8, no. 1, pp. 49–65. DOI: https://doi.org/10.1016/0022-3999(64)90022-4
- PACHMAN, D. R. – LOPRINZI, C. L. – NOVOTNY, P. J. – SATELE, D. V. – LINQUIST, B. M. – WOLF, S. R. – BARTON, D. L. 2013. Sternal skin conductance: a reasonable surrogate for hot flash measurement? In Menopause – The Journal of the Menopause Society, vol. 20, no. 11, pp. 1164–1168. DOI: https://doi.org/10.1097/gme.0b013e31828cec53
- PARTIN, D. L. – SULTAN, M. F. – THRUSH, C. M. – PRIETO, R. – WAGNER, S. J. 2006. Monitoring driver physiological parameters for improved safety. SAE Technical Paper 2006-01-1322. DOI: https://doi.org/10.4271/2006-01-1322
- SHIN, J. – CHOI, H.-K. 2022. Arduino-based wireless spectrometer: a practical application. In Journal of Analytical Science and Technology, vol. 13, article no. 44. DOI: https://doi.org/10.1186/s40543-022-003532
- SIM, D. – KIM, S. M. – KIM, S. S. – DOH, I. 2019, Portable skin analyzers with simultaneous measurements of transepidermal water loss, skin conductance and skin hardness. In Sensors, vol. 19, no. 18, article no. 3857. DOI: https://doi.org/10.3390/s19183857
- TOLIS, E. I. – KARANOTAS, T. – SVOLAKIS, G. – PANARAS, G. – BARTZIS, J. G. 2021. Air quality in cabin environment of different passenger cars: effect of car usage, fuel type and ventilation/infiltration conditions. In Environmental Science and Pollution Research, vol. 28, pp. 51232–51241. DOI: https://doi.org/10.1007/s11356-021-14349-9
- VASHISHT, S. – RAKSHIT, D. 2021. Recent advances and sustainable solutions in automobile air conditioning systems. In Journal of Cleaner Production, vol. 329, article no. 129754. DOI: https://doi.org/10.1016/j.jclepro.2021.129754
- VAVRINSKY, E. – TVAROZEK, V. – GASPIERIK, P. – STOPJAKOVA, V. – DONOVAL, M. – TELEKA, P. 2012. Design of non-invasive setup for car driver biomonitoring. In Procedia Chemistry, vol. 6, pp. 203–210. DOI: https://doi.org/10.1016/j.proche.2012.10.147
- WANG, H. – ZHENG, J. – YANG, T. – HE, Z. – ZHANG, P. – LIU, X. – ZHANG, M. – SUN, L. – YU, X. – ZHAO, J. – LIU, X. – XU, B. – TONG, L. – XIONG, J. 2020. Predicting the emission characteristics of VOCs in a simulated vehicle cabin environment based on small-scale chamber tests: Parameter determination and validation. In Environment International, vol. 142, article no. 105817. DOI: https://doi.org/10.1016/j.envint.2020.105817
- XIE, Y. – LIU, Z. – LIU, J. – LI, K. – ZHANG, Y. – WU, C. – WANG, P. – WANG, X. 2019. A self-learning intelligent passenger vehicle comfort cooling system control strategy. In Applied Thermal Engineering, vol. 166, article no. 114646. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114646
- YIN, C. – LI, H. – CHA, Y. – ZHANG, S. – DU, J. – LI, Z. – YE, W. 2023. Characterizing in-cabin air quality and vehicular air filtering performance for passenger cars in China. In Environmental Pollution, vol. 318, article no. 120884. DOI: https://doi.org/10.1016/j.envpol.2022.120884
- ZHANG, J. 2023. Research on evaluation of emergency communication vehicle cabin‘s internal environment design based on q-rung orthopair fuzzy information. In Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2887–2898. DOI: https://doi.org/10.3233/JIFS-232198