References
- AL-ANZI, A. – KRARTI, M. 2004. Local/global analysis of transient heat transfer from building foundations. In Building and Environment, vol. 39, no. 5, pp. 495–504. DOI: https://doi.org/10.1016/j.buildenv.2003.10.003
- AL-HOMOUD, M. S. 2005. Performance characteristics and practical applications of common building thermal insulation materials. In Building and Environment, vol. 40, no. 3, pp. 353–366. DOI: https://doi.org/10.1016/j.buildenv.2004.05.013
- Al-SANEA, S. A. – ZEDAN, M. F. 2012. Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. In Applied Energy, vol. 98, pp. 584–593. DOI: https://doi.org/10.1016/j.apenergy.2012.04.038
- BALARAS, C. A. – ARGIRIOU, A. A. 2002. Infrared thermography for building diagnostics. In Energy and Buildings, vol. 34, no. 2, pp. 171–183. DOI: https://doi.org/10.1016/S0378-7788(01)00105-0
- BEN-NAKHI, A. E. 2002. Minimizing thermal bridging through window systems in buildings of hot regions. In Applied Thermal Engineering, vol. 22, no. 9, pp. 989–998. DOI: https://doi.org/10.1016/S1359-4311(01)00121-1
- CAPPELLETTI, F. – GASPARELLA, A. – ROMAGNONI, P. – BAGGIO, P. 2011. Analysis of the influence of installation thermal bridges on windows performance: The case of clay block walls. In Energy and Buildings, vol. 43, no. 6, pp. 1435–1442. DOI: https://doi.org/10.1016/j.enbuild.2011.02.004
- EL SAIED, A. – MAALOUF, C. – BEJAT, T. – WURTZ, E. 2022. Slab-on-grade thermal bridges: A thermal behavior and solution review. In Energy and Buildings, vol. 257, article no. 1111770. DOI: https://doi.org/10.1016/j.enbuild.2021.111770
- EN ISO 10211:2020. Thermal bridges in building construction – Heat flows and surface temperatures – Detailed calculations.
- EN 13187:1999. Thermal performance of buildings – Qualitative detection of thermal irregularities in building envelopes – Infrared method.
- FUKUYO, K. 2003. Heat flow visualization for thermal bridge problems. In International Journal of Refrigeration, vol. 26, no. 5, pp. 614–617. DOI: https://doi.org/10.1016/S0140-7007(03)00006-9
- GE, J. – XUE, Y. – FAN, Y. 2021. Methods for evaluating and improving thermal performance of wall-to-floor thermal bridges. In Energy and Buildings, vol. 231, article no. 110565. DOI: https://doi.org/10.1016/j.enbuild.2020.110565
- HERBUT, P. – RZEPCZYŃSKI, M. – ANGRECKA, S. 2018. The analysis of efficiency and investment profitability of a solar water heating system in a multi-family building. In Journal of Ecological Engineering, vol. 19, no. 6, pp. 75–80. DOI: https://doi.org/10.12911/22998993/92675
- HÖGLUND, T. – BURSTRAND, H. 1998. Slotted steel studs to reduce thermal bridges in insulated walls. In Thin-Walled Structures, vol. 32, no. 1–3, pp. 81–109. DOI: https://doi.org/10.1016/S0263-8231(98)00028-7
- CHANGMIN, K. – GWANYONG, P. – HYANGIN, J. – EUI-JONG, K. 2022. Automated classification of thermal defects in the building envelope using thermal and visible images. In Quantitative InfraRed Thermography Journal, vol. 20, no. 3, pp. 106–122. DOI: https://doi.org/10.1080/17686733.2022.2033531
- CHEN, X. – SHUAI, C. – ZHANG, Y. – WU, Y. 2020. Decomposition of energy consumption and its decoupling with economic growth in the global agricultural industry. In Environmental Impact Assessment Review, vol. 81, article no. 106364. DOI: https://doi.org/10.1016/j.eiar.2019.106364
- CHOI, J.-S. – KIM, C. – JANG, H. – KIM, E.-J. 2022. Dynamic thermal bridge evaluation of window-wall joints using a model-based thermography method. In Case Studies in Thermal Engineering, vol. 35, article no. 102117. DOI: https://doi.org/10.1016/j.csite.2022.102117
- JUÁREZ, M. C. – MORALES, M. P. – MUŇOZ, P. – MENDÍVIL, M. A. 2012. Influence of horizontal joint on the thermal properties of single-leaf walls with lightweight clay blocks. In Energy and Buildings, vol. 49, pp. 362–366. DOI: https://doi.org/10.1016/j.enbuild.2012.02.033
- KARAS, I. – GÁLIK, R. 2004. Contact and non-contact thermometry in the milking acquisition process. In Czech Journal of Animal Science, vol. 49, no. 1, pp. 1–7. DOI: https://doi.org/10.17221/4264-CJAS
- KEMPTON, L. – KOKOGIANNAKIS, G. – GREEN, A. – COOPER, P. 2021. Evaluation of thermal bridging mitigation techniques and impact of calculation methods for lightweight steel frame external wall systems. In Journal of Building Engineering, vol. 43, article no. 102893. DOI: http://dx.doi.org/10.1016/j.jobe.2021.102893
- KIM, S. – SEO, J. – JEONG, H. – KIM, J. 2022. In situ measurement of the heat loss coefficient of thermal bridges in a building envelope. In Energy and Buildings, vol. 256, article no. 111627. DOI: https://doi.org/10.1016/j.enbuild.2021.111627
- KYTHREOTOU, N. – FLORIDES, G. – TASSOU, S. A. 2012. A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus. In Energy, vol. 40, no. 1, pp. 226–235. DOI: https://doi.org/10.1016/j.energy.2012.01.077
- LARBI, A. B. 2005. Statistical modelling of heat transfer for thermal bridges of buildings. In Energy and Buildings, vol. 37, no. 9, pp. 945–951. DOI: https://doi.org/10.1016/j.enbuild.2004.12.013
- MAYER, Z. – KAHN, J. – HOU, Y. – GÖTZ, M. – VOLK, R. – SCHULTMANN, F. 2023. Deep learning approaches to building rooftop thermal bridge detection from aerial images. In Automation in Construction, vol. 146, article no. 104690. DOI: https://doi.org/10.1016/j.autcon.2022.104690
- TAYLOR, T. – COUNSELL, J. – GILL, S. 2014. Combining thermography and computer simulation to identify and assess insulation defects in the construction of building façade. In Energy and Buildings, vol. 76, pp. 130–142. DOI: https://doi.org/10.1016/j.enbuild.2014.02.080
- TEJEDOR, B. – BARREIRA, E. – ALMEIDA, R. M. S. F. – CASALS, M. 2020. Thermographic 2D U-value map for quantifying thermal bridges in building façades. In Energy and Buildings, vol. 224, article no. 110176. DOI: https://doi.org/10.1016/j.enbuild.2020.110176
- THEODOSIOU, T. – TSIKALOUDAKI, K. – KONTOLEON, K. – GIARMA, C. 2021. Assessing the accuracy of predictive thermal bridge heat flow methodologies. In Renewable and Sustainable Energy Reviews, vol. 136, article no. 110437. DOI: https://doi.org/10.1016/j.rser.2020.110437
- VITÁZEK, I. – TIROL, J. 2008. Relation between surface temperature and dryer operation. In Research in Agricultural Engineering, vol. 54, no. 4, pp. 176–182. DOI: https://doi.org/10.17221/14/2008-RAE
- VÍTĚZ, T. – TRÁVNÍČEK, P. 2011. The measurement of heat loss with use of a thermal imaging system. In Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 59, no. 3, pp. 193–196. DOI: https://doi.org/10.11118/actaun201159030193
- XUE, Y. – FAN, Y. – CHEN, S. – WANG, Z. – GAO, W. – SUN, Z. – GE, J. 2023. Heat and moisture transfer in wall-to-floor thermal bridges and its influence on thermal performance. In Energy and Buildings, vol. 279, article no. 112642. DOI: https://doi.org/10.1016/j.enbuild.2022.112642
- ZHAO, K. – JIANG, Z. – HUANG, Y. – SUN, Z. – WANG, L. – GAO, W. – GE, J. 2022. The method of reducing heat loss from thermal bridges in residential buildings with internal insulation in the hot summer and cold winter zone of China. In Journal of Building Engineering, vol. 62, article no. 105421. DOI: https://doi.org/10.1016/j.jobe.2022.105421