References
- ACT no. 355/2007 of the National Council of the Slovak Republic of 21 June 2027 on the protection, promotion and development of public health and on the amendment of certain laws.
- ALLEN, J. D. – HALL, L. W. – COLLIER, R. J. –SMITH, J. F. 2015. Effect of core body temperature, time of day, and climate conditions on behavioural patterns of lactating dairy cows experiencing mild to moderate heat stress. In Journal of Dairy Science, vol. 98, no. 1, pp.118–127. DOI: https://doi.org/10.3168/jds.2013-7704
- ANGRECKA, S. – HERBUT, P. – NAWALANY, G. – SOKOŁOWSKI, P. 2017. The impact of localization and barn type on insolation of sidewall stalls during summer. In Journal of Ecological Engineering, vol. 18, no. 4, pp. 60–66. DOI: https://doi.org/10.12911/22998993/74398
- ANDRADE, R. R. – TINÔCO, I. F. F. – DAMASCENO, F. A. – BARBARI, M. – VALENTE, D. A. – VILELA, M. O. – SOUZA, C. F. – CONTI, L. – ROSSI, G. 2020. Lighting and noise levels in compost dairy barns with natural and forced ventilation. In Agronomy Research, vol. 18, no. S1, pp. 689–698. DOI: https://doi.org/10.15159/AR.20.104
- ARMSTRONG, D. V. 1994. Heat stress interaction with shade and cooling. In Journal of Dairy Science, vol. 77, no. 7, pp. 2044–2050. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77149-6
- ASHER, A. – SHABTAY, A. – HAIM, A. – AHARONI, Y. – MIRON, J. – ADIN, G. TAMIR, A. – ARIELI, A. – HALACHMI, I. – MOALLEM, U. – ORLOV, A. – BROSH, A. 2014. Time required to determine performance variables and production efficiency of lactating dairy cows. Journal of Dairy Science, vol. 97, no. 7, pp. 4340–4353
- ASHER, A. – FIALKO, M. – FARES, F. – MOALLEM, U. – YAACOBY, S. – GUTMAN, R. 2022. The effect of short-wavelength white LED illumination throughout the night on the milk fatty acid profile of high-yielding dairy cows. In Biology, vol. 11, no.12, article no.1799. DOI: https://doi.org/10.3390/biology11121799
- BERMAN, A. 2005. Estimates of heat stress relief needs for Holstein dairy cows. In Journal of Animal Science, vol. 83, no. 6, pp. 1377–1384. DOI: https://doi.org/10.2527/2005.8361377x
- BOHMANOVA, J. – MISZTAL, I. – COLE, J. B. 2007. Temperature-humidity indices as indicators of milk production losses due to heat stress. In Journal of Dairy Science, vol. 90, no. 4, pp. 1947–1956. DOI: https://doi.org/10.3168/jds.2006-513
- BROUČEK, J. – RYBA, Š. – DIANOVÁ, M. – UHRINČAŤ, M. – ŠOCH, M. – ŠÍSTKOVÁ, M. – MALÁ, G. – NOVÁK, P. 2020. Effect of evaporative cooling and altitude on dairy cows milk efficiency in lowlands. In International Journal of Biometeorology, vol. 64, no. 3, pp. 433–444. DOI: https://doi.org/10.1007/s00484-019-01828-5
- DAHL, G. E. – TAO, S. – THOMPSON, I. M. 2012. Lactation Biology Symposium: Effects of photoperiod on mammary gland development and lactation. In Journal of Animal Science, vol. 90, no. 3, pp. 755–760. DOI: https://doi.org/10.2527/jas.2011-4630
- DASH, S. – CHAKRAVARTY, A. K. – SAH, V. – JAMUNA, V. – BEHERA, R. – KASHYAP, N. – DESHMUKH, B. 2015. Influence of temperature and humidity on pregnancy rate of Murrah buffaloes under subtropical climate. In Asian-Australasian Journal of Animal Sciences, vol. 28, no. 7, pp. 943–950. DOI: https://doi.org/10.5713/ajas.14.0825
- DECREE no. 99/2016 of the Ministry of Health of the Slovak Republic of 27 January 2016 on details on health protection from heat and cold stress at work
- FURNARIS, F. – GHIMPETEANU, O. M. – PREDOI, G. 2016. Dairy cows´ welfare assessment in a farm from south-eastern Romania. In Agriculture and Agricultural Science Procedia, vol. 10, pp. 403–407. DOI: https://doi.org/10.1016/j.aaspro.2016.09.081
- GANTNER, V. – MIJIĆ, P. – KUTEROVAC, K. – BARAĆ, Z. – POTOČNIK, K. 2015. Heat stress and milk production in the first parity Holsteins – threshold determination in eastern Croatia. In Poljoprivreda/Agriculture, vol. 21, no. 1, pp. 97–100. DOI: https://doi.org/10.18047/poljo.21.1.sup.22
- HAYES A. W. 2007. Principles and Methods of Toxicology. 5th ed., Boca Raton : CRC Press, 2296 pp. ISBN 9780849337789
- HEMPEL, S. – MENZ, C. – PINTO, S. – GALÁN, E. – JANKE, D. – ESTELLÉS, F. – MÜSCHNER-SIEMENS, T. – WANG, X. – HEINICKE, J. – ZHANG, G. – AMON, B. – DEL PRADO, A. – AMON, T. 2019. Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts. In Earth System Dynamics, vol. 10, no. 4, pp. 859–884. DOI: https://doi.org/10.5194/esd-10-859-2019
- HERBUT, P. – ANGRECKA S. 2013 Forecasting heat stress in dairy cattle in selected barn zones with the help of THI and THI-adj indexes. In Annals of Animal Science, vol.13, no. 4, pp. 837–848. DOI: https://doi.org/10.2478/aoas-2013-0029
- HERBUT, P. – BIEDA, W. – ANGRECKA, S. 2015. Influence of hygrothermal conditions on milk production in a free stall barn during hot weather. In Animal Science Papers and Reports, vol. 33, no. 1, pp.49–58.
- HERBUT, P. – ANGRECKA, S. 2018. The effect of heat stress on time spent lying by cows in a housing system. In Annals of Animal Science, vol. 18, no. 3, pp. 825–833. DOI: https://doi.org/10.2478/aoas-2018-0018
- HUTLA P. 1998. Lighting in agriculture. Study report. Prague : Institute of Agricultural and Food Information, 53 pp. ISBN 80-86153-96-7
- IMRICH, I. – TOMAN, R. – PŠENKOVÁ, M. – MLYNEKOVÁ, E. – KANKA, T. – MLYNEK, J. – PONTEŠOVÁ, B. 2021. Effect of temperature and relative humidity on the milk production of dairy cows. In Science, Technology and Innovation, vol. 13, no. 2, pp. 22–27. DOI: https://doi.org/10.5604/01.3001.0015.5609
- KELLY, C. F. – BOND, T. F. 1971. Bioclimatic factors and their measurement, a guide to environmental research on animals. Washintong, DC : National Academy of Sciences.
- KIC, P. 2017. Effect of construction shape and materials on indoor microclimatic conditions inside the cowsheds in dairy farms. In Agronomy Research, vol. 15, no. 2, pp. 426–434.
- KIC, P. 2022. Influence of external thermal conditions on temperature-humidity parameters of indoor air in Czech dairy farm during the summer. In Animals, vol. 12, no. 15, article no. 1895. DOI: https://doi.org/10.3390/ani12151895
- LEĂO, J. M. – LIMA, J. A. M. – PÔSSAS, F. P. – PEREIRA, L. G. R. 2015. Use of infrared thermography in precision livestock. In Embrapa Gado de Leite, vol. 79, pp. 97–109. (In Portuguese)
- LI, G. – CHEN, S. – CHEN, J. – PENG, D. – GU, X. 2020. Predicting rectal temperature and respiration rate responses in lactating dairy cows exposed to heat stress. In Journal of Dairy Science, vol. 103, no. 6, pp. 5466–5484. DOI: https://doi.org/10.3168/jds.2019-16411
- NORDLUND, K. V. – STRASSBURG, P. – BENNETT, T. B. – OETZEL, G. R. – COOK N. B. 2019. Thermodynamics of standing and lying behavior in lactating dairy cows in freestall and parlor holding pens during conditions of heat stress. In Journal of Dairy Science, vol. 102, no. 7, pp. 6495–6507.
- PAPEŽ, J. – KIC, P. 2015. Indoor environment in milking parlor and cowshed during the milking process. 2015. In 14th International Scientific Conference on Engineering for Rural Development. Latvia, Jelgava : Latvia University of Agriculture, pp. 112–118.
- PENEV, T. – RADEV, V. – SLAVOV, T. – KIROV, V. – DIMOV, D. – ATANASSOV, A. – MARINOV, I. 2014. Effect of lighting on the growth, development, behaviour, production and reproduction traits in dairy cows. In International Journal of Current Microbiology and Applied Sciences, vol. 3, no. 11, pp. 798–810.
- POGRAN, Š. – BIEDA, W. – GÁLIK, R. – LENDELOVÁ, J. – ŠVENKOVÁ, J. 2011. Quality of Indoor Environment of Stables. Nitra : SUA in Nitra, 242 pp. ISBN 978-80-552-0557-1 (In Slovak)
- POLDERMAN, M. C. A. – VAN KOOTEN, C. – SMIT, N. P. M. – KAMERLING, S. W. A. – PAVEL, S. 2006. Ultraviolet-A (UVA-1) radiation suppresses immunoglobulin production of activated B lymphocytes in vitro. In Clinical & Experimental Immunology, vol. 145, no. 3, pp. 528–534. DOI: https://doi.org/10.1111/j.1365-2249.2006.03136.x
- POLSKY, L. – VON KEYSERLINGK, M. A. G. 2017. Invited review: Effects of heat stress on dairy cattle welfare. In Journal of Dairy Science, vol. 100, no. 11, pp. 8645–8657. DOI: https://doi.org/10.3168/jds.2017-12651
- PŠENKA, M. – MIHINA, Š. – JÄRVI, M. – ŠÍSTKOVÁ, M. – KAŽIMÍROVÁ, V. – HOLOTA, T. 2018. Noise analysis at different technological solutions of milking devices. In Applied Engineering in Agriculture, vol. 34, no. 6, pp. 921–927. DOI: https://doi.org/10.13031/aea.12717
- RENDIC, S. 2002. Summary of information on human CYP emzymes: human P450 metabolism data. In Drug Metabolism Reviews, vol. 34, no. 1–2, pp. 83–448. DOI: https://doi.org/10.1081/dmr-120001392
- RONG, L. – NIELSEN, P. V. – BJERG, B. – ZHANG, G. 2016. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality. In Computers and Electronics in Agriculture, vol. 121, pp. 180–190. DOI: https://doi.org/10.1016/j.compag.2015.12.005
- STN 36 0088. 1973. Lighting in agricultural plants. (In Slovak)
- STN EN 12464-1. 2023. Light and lighting. Lighting of workplaces. Part 1: Indoor workplaces.
- ŠÍSTKOVÁ, M. – PETERKA, A. – PETERKA, B. 2010. Light and noise conditions of buildings for breeding dairy cows. In Research in Agriculture Engineering, vol. 56, no. 3, pp. 92–98. DOI: https://doi.org/10.17221/43/2009-RAE
- TOUITOU, Y. – REINBERG, A. – TOUITOU, D. 2017. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock. Health impacts and mechanisms of circadian disruption. In Life Sciences, vol. 173, pp. 94–106. DOI: https://doi.org/10.1016/j.lfs.2017.02.008
- VARLYAKOV, I. – RADEV, V. – SLAVOV, T. – GRIGOROVA, N. 2010. Ethological evaluation of a building for free housing of dairy cows. I. Behavioral activities in the summer. In Trakia Journal of Sciences, vol. 8, no. 1, pp. 222–229.
- WANG, X. – GAO, H. – GEBREMEDHIN, K. G. – BJERG, B. S. – VAN OS, J. – TUCKER, C. B. – ZHANG, G. 2018a. A predictive model of equivalent temperature index for dairy cattle (ETIC). In Journal of Thermal Biology, vol. 76, pp. 165–170. DOI: https://doi.org/10.1016/j.jtherbio.2018.07.013
- WANG, X. – GAO, H. – GEBREMEDHIN, K. G. – BJERG, B. S. – VAN OS, J. – TUCKER, C. B. – ZHANG, G. 2018b. Corrigendum to “A predictive model of equivalent temperature index for dairy cattle (ETIC)”. In Journal of Thermal Biology, vol. 82, pp. 252–253. DOI: https://doi.org/10.1016/j.jtherbio.2018.12.012
- WILSON, A. M. – WRIGHT, T. C. – CANT, J. P. – OSBORNE, V. R. 2022. Preferences of dairy cattle for supplemental light-emitting diode lighting in the resting area. In Animals, vol. 12, no. 15, article no. 1894. DOI: https://doi.org/10.3390/ani12151894
- WU, W. – ZHAI, J. – ZHANG, G. – NIELSEN, P. V. 2012. Evaluation of methods for determining air exchange rate in naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD). In Atmospheric Environment, vol. 63, pp. 179–188. DOI: https://doi.org/10.1016/j.atmosenv.2012.09.042
- YAN, G. – LI, H. – SHI, Z. 2021. Evaluation of thermal indices as the indicators of heat stress in dairy cows in a temperate climate. In Animals, vol.11, no. 8, article no. 2459. DOI: https://doi.org/10.3390/ani11082459
- YI, Q. – LI, H. – WANG, X. – ZONG, CH. – ZHANG, G. 2019. Numerical investigation on the effects of building configuration on discharge coefficient for a cross ventilated dairy building model. In Biosystems Engineering, vol. 182, pp. 107–122. DOI: https://doi.org/10.1016/j.biosystemseng.2019.04.003
- ZÄHNER, M. – SCHRADER, L. – HAUSER, R. – KECK, M. – LANGHANS, W. – WECHSLER, B. 2004. The influence of climatic conditions on physiological and behavioural parameters in dairy cows kept in open stables. In Animal Science, vol. 78, no. 1, pp. 39–47. DOI: https://doi.org/10.1017/S1357729800053923
- ZEJDOVÁ, P. – CHLÁDEK, G. – FALTA, D. 2014. Effect of stable environment on behaviour and milk productivity of dairy cows. 21 pp. Available at: http://web2.mendelu.cz/af_291_projekty/files/21/21-vliv_prostredi_na_skot_logolink.pdf (In Czech)
- ZHOU, M. – AARNINK, A. J. A. – HUYNH, T. T. T. – VAN DIXHOORN, I. D. E. – GROOT KOERKAMP, P. W. G. 2022. Effects of increasing air temperature on physiological and productive responses of dairy cows at different relative humidity and air velocity levels. In Journal of Dairy Science, vol. 105, no. 2, pp. 1701–1716. https://doi.org/10.3168/jds.2021-21164