References
- ABRAHÁM, R. – ZUBČÁK, T. – MAJDAN, R. – KOLLÁROVÁ, K. – MATEJKOVÁ, E. –MASAROVIČOVÁ, S. – DRLIČKA, R. 2022. Drawbar performance of tractor tyres with steel spikes at 100%-wheel slip. In Acta Technologica Agriculturae, vol. 25, no. 2, pp. 97–104. DOI: https://doi.org/10.2478/ata-2022-0016
- AHMADI, I. 2018. A draught force estimator for disc harrow using the laws of classical soil mechanics. In Biosystems Engineering, vol. 171, pp. 52–62. DOI: https://doi.org/10.1016/j.biosystemseng.2018.04.008
- AL-JANOBI, A. – AL-HAMED, S. – ABOUKARIMA, A. – ALMAJHADI, Y. 2020. Modeling of draft and energy requirements of a moldboard plow using artificial neural networks based on two novel variables. In Engenharia Agrícola, vol. 40, no. 3, pp. 363–373. DOI: https://doi.org/10.1590/1809-4430-Eng.Agric.v40n3p363-373/2020
- Al-MASTAWI, K. E. – DAHHAM, G. A. – YAHYA, L. M. 2022. Effects of soil moisture content, tire inflation pressure, and tillage speed on tractive performance of 2WD tractor in Northern Iraq. In Transactions of the Chinese Society of Agricultural Machinery, vol. 53, no. 8, pp. 133–139.
- ALGEZI, A. – ALMALIKI, S. 2022. Prediction of fuel consumption criteria of tractor using neural networks and mathematical models. In Annals of Forest Research, vol. 65, no. 1, pp. 8902–8922.
- ALMALIKI, S. 2018. Simulation of draft force for three types of plow using response surface method under various field conditions. In Iraqi Journal of Agricultural Sciences, vol. 49, no. 6, pp. 1123–1124. DOI: https://doi.org/10.36103/ijas.v49i6.151
- BADGUJAR, C. – DAS, S. – FIGUEROA, D. M.– FLIPPO, D. 2022. Application of computational intelligence methods in agricultural soil-machine interaction: A review. In Agriculture, vol. 13, no. 2, article no. 357. DOI: https://doi.org/10.3390/agriculture13020357
- BORGES, P. H. M. – MENDOZA, Z. M. S. H. – MAIA, J. C. S. – BIANCHINI, A. – FERNÁNDES, H. C. 2017. Estimation of fuel consumption in agricultural mechanized operations using artificial neural networks. In Engenharia Agricola, vol. 37, no. 1, pp. 136–147. DOI: https://doi.org/10.1590/1809-4430-Eng.Agric.v37n1p136-147/2017
- CVIKLOVIČ, V. – SRNÁNEK, R. – HRUBÝ, D. – HARNIČÁROVÁ, M. 2021. The control reversing algorithm for autonomous vehicles with PSD-controlled trailers. In Acta Technologica Agriculturae, vol. 24, no. 4, pp. 187–194. DOI: https://doi.org/10.2478/ata-2021-0031
- DANE, J. H. – TOPP, C. G. 2020. Methods of Soil Analysis, Part 4: Physical Methods (20th ed.). John Wiley & Sons, 1744 pp. ISBN 978-0-891-18893-3
- DIZAJI, H. Z. – KHORASANI, M. E. – NATEGH, N. A. – SHEIKHDAVOODI, M. – ANDEKAIEZADEH, K. 2022. Specific draft modeling for combined and simple tillage implements. In Agricultural Engineering International: CIGR Journal, vol. 24, no. 4, pp. 41–56.
- DULF, E. H. – VODNAR, D. C. – DANKU, A. – MARTĂU, A. G. – TELEKY, B. E. – DULF, F. V. – RAMADAN, M. F. – CRISAN, O. 2022. Mathematical modeling and optimization of Lactobacillus species single and co-culture fermentation processes in wheat and soy dough mixtures. In Frontiers in Bioengineering and Biotechnology, vol. 10, pp. 1–16. DOI: https://doi.org/10.3389/fbioe.2022.888827
- FAWZI, H. – MOSTAFA, S. A. – AHMED, D. – ALDUAIS, N. – MOHAMMED, M. A. – ELHOSENY, M. 2021. TOQO: A new tillage operations quality optimization model based on parallel and dynamic decision support system. In Journal of Cleaner Production, vol. 316, article no. 128263. DOI: https://doi.org/10.1016/j.jclepro.2021.128263
- FAZEL, F. – GOLMOHAMMADI, A. – SHAHGHOLI, G. – AHMADI, E. 2020. Predictions of the apple bruise volume on the basis of impact energy or maximum contact force using adaptive neuro-fuzzy inference system (ANFIS). In Acta Technologica Agriculturae, vol. 23, no. 3, pp. 118–125. DOI: https://doi.org/10.2478/ata-2020-0019
- FORKUOR, G. – HOUNKPATIN, O. K. L. – WELP, G. – THIEL, M. 2017. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. In PLoS ONE, vol. 12, no. 1, pp. 1–21. DOI: https://doi.org/10.1371/journal.pone.0170478
- GAUTAM, P. V. – TIWARI, P. S. – AGRAWAL, K. N. – ROUL, A. K. – KUMAR, M. – SINGH, K. 2022. Optimisation and modelling of draft and rupture width using response surface methodology and artificial neural network for tillage tools. In Soil Research, vol. 60, no. 8, pp. 816–838. DOI: https://doi.org/10.1071/SR21271
- GEBRE, T. – ABDI, Z. – WAKO, A. – YITBAREK, T. 2023. Development of a mathematical model for determining the draft force of ard plow in silt clay soil. In Journal of Terramechanics, vol. 106, pp. 13–19. DOI: https://doi.org/10.1016/j.jterra.2022.11.004
- GILL, W. R. – VANDEN BERG, G. E. 1968. Soil Dynamics in Tillage and Traction. Agriculture Handbook No. 316, 511 pp. Washington, D.C. : U. S. Government Printing Office.
- HAN, L. – YANG, G. – DAI, H. – XU, B. – YANG, H. – FENG, H. – LI, Z. – YANG, X. 2019. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. In Plant Methods, vol. 15, no. 1, article no. 10. DOI: https://doi.org/10.1186/s13007-019-0394-z
- HE, C. – GUO, Y. – GUO, X. – SANG, H. 2023. A mathematical model for predicting the draft force of shank-type tillage tine in a compacted sandy loam. In Soil and Tillage Research, vol. 228, article no. 105642. DOI: https://doi.org/10.1016/j.still.2023.105642
- KARSAVRAN, Y. – ERDIK, T. 2021. Artificial intelligence based prediction of seawater level: A case study for Bosphorus Strait. In International Journal of Mathematical, Engineering and Management Sciences, vol. 6, no. 5, pp. 1242–1254. DOI: https://doi.org/10.33889/IJMEMS.2021.6.5.075
- KHEIRALLA, A. F. – YAHYA, A. – ZOHADIE, M. – ISHAK, W. 2004. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. In Soil and Tillage Research, vol. 78, no. 1, pp. 21–34. DOI: https://doi.org/10.1016/j.still.2003.12.011
- KHESSRO, M. K. – HILAL, Y. Y. – AL-JAWADI, R. A. – AL-IRHAYIM, M. N. 2022. Greenhouse energy analysis and neural networks modelling in Northern Iraq. In Acta Technologica Agriculturae, vol. 25, no. 4, pp. 205–210. DOI: https://doi.org/10.2478/ata-2022-0030
- LÓPEZ-VÁZQUEZ, A. – CADENA-ZAPATA, M. – CAMPOS-MAGAÑA, S. – ZERMEÑO-GONZALEZ, A. – MENDEZ-DORADO, M. 2019. Comparison of energy used and effects on bulk density and yield by tillage systems in a semiarid condition of Mexico. In Agronomy, vol. 9, no. 4, article no. 189. DOI: https://doi.org/10.3390/agronomy9040189
- MOHAMMED, S. J. – ABDEL-KHALEK, H. A. – HAFEZ, S. M. 2022. Predicting performance measurement of residential buildings using machine intelligence techniques (MLR, ANN and SVM). In Iranian Journal of Science and Technology – Transactions of Civil Engineering, vol. 46, no. 4, pp. 3429–3451. DOI: https://doi.org/10.1007/s40996-021-00742-4
- NKAKINI, S. O. 2015. Draught force requirements of a disc plough at various tractor forward speeds in loamy sand soil, during ploughing. In International Journal of Advanced Research in Engineering and Technology, vol. 6, no. 7, pp. 52–68.
- ODUMA, O. – EHIOMOGUE, P. – OKEKE, C. G. – ORJI, N. F. – UGWU, E. C. – UMUNNA, M. F. – NWOSU-OBIEOGU, K. 2022. Modeling and optimization of energy requirements of disc plough operation on loamy-sand soil in South-East Nigeria using response surface methodology. In Scientific African, vol. 17, article no. e01325. DOI: https://doi.org/10.1016/j.sciaf.2022.e01325
- OMAR, M. – SHANABLEH, A. – MUGHIEDA, O. – ARAB, M. – ZEIADA, W. – AL-RUZOUQ, R. 2018. Advanced mathematical models and their comparison to predict compaction properties of fine-grained soils from various physical properties. In Soils and Foundations, vol. 58, no. 6, pp. 1383–1399. DOI: https://doi.org/10.1016/j.sandf.2018.08.004
- OSKOUI, K. E. – HARVEY, S. J. 1992. Predicting cone index from soil physical properties and organic matter content. Paper no. 92-1056. St. Joseph, MI, USA : American Society of Agricultural and Biological Engineers, pp. 1–16.
- PENTOŚ, K. – PIECZARKA, K. – LEJMAN, K. 2020. Application of soft computing techniques for the analysis of tractive properties of a low-power agricultural tractor under various soil conditions. In Complexity, vol. 2020, article no. 7607545. DOI: https://doi.org/10.1155/2020/7607545
- QURAISHI, M. Z. – MOUAZEN, A. M. 2013. Development of a methodology for in situ assessment of topsoil dry bulk density. In Soil and Tillage Research, vol. 126, pp. 229–237. DOI: https://doi.org/10.1016/j.still.2012.08.009
- RAJABI-VANDECHALI, M. – ABBASPOUR-FARD, M. H. – ROHANI, A. 2018. Development of a prediction model for estimating tractor engine torque based on soft computing and low cost sensors. In Measurement, vol. 121, pp. 83–95. DOI: https://doi.org/10.1016/j.measurement.2018.02.050
- SANTOS, F. L. – DE JESUS, V. A. M. – VALENTE, D. S. M. 2012. Modeling of soil penetration resistance using statistical analyses and artificial neural networks. In Acta Scientiarum – Agronomy, vol. 34, no. 2, pp. 219–224. DOI: https://doi.org/10.4025/actasciagron.v34i2.11627
- SERRANO, J. M. – PEÇA, J. O. – MARQUES DA SILVA, J. – PINHEIRO, A. – CARVALHO, M. 2007. Tractor energy requirements in disc harrow systems. In Biosystems Engineering, vol. 98, no. 3, pp. 286–296. DOI: https://doi.org/10.1016/j.biosystemseng.2007.08.002
- SHAFAEI, S. M. – LOGHAVI, M. – KAMGAR, S. 2018. A comparative study between mathematical models and the ANN data mining technique in draft force prediction of disk plow implement in clay loam soil. In Agricultural Engineering International: CIGR Journal, vol. 20, no. 2, pp. 71–79.
- SOYSAL, A. – OZTURK, H. H. 2023. Energy saving measures for soil tillage. In European Journal of Agriculture & Food Sciences, vol. 5, no. 1, pp. 1–4. DOI: https://doi.org/10.24018/ejfood.2023.5.1.590
- TATAR, A. – NASERI, S. – SIRACH, N. – LEE, M. – BAHADORI, A. 2015. Prediction of reservoir brine properties using radial basis function (RBF) neural network. In Petroleum, vol. 1, no. 4, pp. 349–357. DOI: https://doi.org/10.1016/j.petlm.2015.10.011
- UPADHYAY, G. – RAHEMAN, H. 2019. Specific draft estimation model for offset disc harrows. In Soil and Tillage Research, vol. 191, pp. 75–84. DOI: https://doi.org/10.1016/j.still.2019.03.021
- VARANI, M. – MATTETTI, M. – MOLARI, G. – BIGLIA, A. – COMBA, L. 2023. Correlation between power harrow energy demand and tilled soil aggregate dimensions. In Biosystems Engineering, vol. 225, pp. 54–68. DOI: https://doi.org/10.1016/j.biosystemseng.2022.11.008
- ZHANG, Y. – DU, Y. – YANG, Z. – CHEN, D. – SONG, Z. – ZHU, Z. 2022. Construction method of high-horsepower tractor digital twin. In Digital Twin, vol. 2, no. 12. DOI: https://doi.org/10.12688/digitaltwin.17615.1
- ZHAO, J. – ZHOU, J. – SUN, C. – WANG, X. – LIANG, Z. – QI, Z. 2022. Identification model of soil physical state using the Takagi–Sugeno fuzzy neural network. In Agriculture, vol. 12, no. 9, article no. 1367. DOI: https://doi.org/10.3390/agriculture12091367