Have a personal or library account? Click to login
Soil Density in Traditional Mouldboard Tillage Cover

References

  1. ABBASPOUR-GILANDEH, M. – ABBASPOURGILANDEH, Y. 2019. Modelling soil compaction of agricultural soils using fuzzy logic approach and adaptive neuro-fuzzy inference system (ANFIS) approaches. In Modeling Earth Systems and Environment, vol. 5, pp. 13–20. DOI: https://doi.org/10.1007/s40808-018-0514-1
  2. ALAOUI, A. – DISERENS, E. 2018. Mapping soil compaction – A review. In Current Opinion in Environmental Science & Health, vol. 5, pp. 60–66. DOI: https://doi.org/10.1016/j.coesh.2018.05.003
  3. BLEDNYKH, V. V. – SVECHNIKOV, P. G. – TROYANOVSKAYA, I. P. 2015. Analytical model of soil pulverization and tillage tools. In Procedia Engineering, vol. 129, pр. 69–74. DOI: https://doi.org/10.1016/j.proeng.2015.12.010
  4. CERDÀ, A. – DALIAKOPOULOS, I. N. – TEROL, E. – NOVARA, A. – FATAHI, Y. – MORADI, E. – SALVATI, L. – PULIDO, M. 2021. Long-term monitoring of soil bulk density and erosion rates in two Prunus persica (L) plantations under flood irrigation and glyphosate herbicide treatment in La Ribera district, Spain. In Journal of Environmental Management, vol. 282, article no. 111965. DOI: https://doi.org/10.1016/j.jenvman.2021.111965
  5. CHAMEN, W. C. T. – MOXEY, A. P. – TOWERS, W. – BALANA, B. – HALLETT, P. D. 2015. Mitigating arable soil compaction: A review and analysis of available cost and benefit data. In Soil and Tillage Research, vol. 146, Part A, pp. 10–25. DOI: https://doi.org/10.1016/j.still.2014.09.011
  6. CORREA, J. – POSTMA, J. A. – WATT, M. – WOJCIECHOWSKI, T. 2019. Soil compaction and the architectural plasticity of root systems. In Journal of Experimental Botany, vol. 70, no. 21, pp. 6019–6034. DOI: https://doi.org/10.1093/jxb/erz383
  7. de MOURA, M. S. – SILVA, B. M. – MOTA, P. K. – BORGHI, E. – de RESENDE, A. V. – ACUÑA-GUZMAN, S. F. – ARAÚJO, G. S. S. – da SILVA, L. C. M. – de OLIVEIRA, G. C. – CURI, N. 2021. Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve least limiting water range in a Ferralsol. In Agricultural Water Management, vol. 243, article no. 106523. DOI: https://doi.org/10.1016/j.agwat.2020.106523
  8. dos SANTOS, V. – da SILVA, A. C. – SCIPIONI, M. C. – DREYER, J. B. B. – SILVEIRA, M. F. – SCHLICKMANN, M. B. – MORAES, G. C. – AGUIAR, J. T. – LARSEN, J. G. – dos SANTOS, G. N. – HIGUCHI, P. 2021. The effects of soil compaction and fertility on a threatened endemic palm species in a global conservation hotspot. In Plant Ecology, vol. 222, no. 5, pp. 603–611. DOI: https://doi.org/10.1007/s11258-021-01128-2
  9. FROEHLICH, H. A. – MILES, D. W. R. – ROBBINS, R. W. 1985. Soil bulk density recovery on compacted skid trails in central Idaho. In Soil Science Society of America Journal, vol. 49, no. 4, pp. 1015–1017. DOI: https://doi.org/10.2136/sssaj1985.03615995004900040045x
  10. GUIMARÃES, R. M. L. – LAMANDÉ, M. – MUNKHOLM, L. J. – BALL, B. C. –KELLER, T. 2017. Opportunities and future directions for visual soil evaluation methods in soil structure research. In Soil and Tillage Research, vol. 173, pp. 104–113. DOI: https://doi.org/10.1016/j.still.2017.01.016
  11. HERNÁNDEZ, T. D. B. – SLATER, B. K. – CORBALÁ, R. T. – SHAFFER, J. M. 2019. Assessment of long-term tillage practices on physical properties of two Ohio soils. In Soil and Tillage Research, vol. 186, pp. 270–279. DOI: https://doi.org/10.1016/j.still.2018.11.004
  12. HU, W. – DREWRY, J. – BEARE, M. – EGER, A. – MÜLLER, K. 2021. Compaction induced soil structural degradation affects productivity and environmental outcomes: A review and New Zealand case study. In Geoderma, vol. 395, article no. 115035. DOI: https://doi.org/10.1016/j.geoderma.2021.115035
  13. HUANG, X. – HORN, R. – REN, T. 2022. Soil structure effects on deformation, pore water pressure, and consequences for air permeability during compaction and subsequent shearing. In Geoderma, vol. 406, article no. 115452. DOI: https://doi.org/10.1016/j.geoderma.2021.115452
  14. KOKIEVA, G. Е. – TROYANOVSKAYA, I. P. – OREKHOVSKAYA, A. A. – KALIMULLIN, M. N. – DZJASHEEV, А-М. S. – IVANOV, A. A. – SOKOLOVA, V. A. 2021. Research of soil compaction process in area of contact with a wheel mover. In Journal of Physics: Conference Series, vol. 2094, article no. 042003. DOI: https://doi.org/10.1088/1742-6596/2094/4/042003
  15. LEDERMÜLLER, S. – FICK, J. – JACOBS, A. 2021. Perception of the relevance of soil compaction and application of measures to prevent it among German farmers. In Agronomy, vol. 11, no. 5, article no. 969. DOI: https://doi.org/10.3390/agronomy11050969
  16. LOMBARDI, F. – ORTUANI, B. – FACCHI, A. – LUALDI, M. 2022. Assessing the perspectives of ground penetrating radar for precision farming. In Remote Sensing, vol. 14, no. 23, article no. 6066. DOI: https://doi.org/10.3390/rs14236066
  17. MEDVEDEV, V. V. – PLYSKO, I. V. 2016. Spatial heterogeneity of physical properties of the soils in Ukraine. In Agricultural Science and Practice, vol. 3, no. 1, pp. 3–16. DOI: https://doi.org/10.15407/agrisp3.01.003
  18. MEDVEDEV, V. V. 2009. Soil penetration resistance and penetrographs in studies of tillage technologies. In Eurasian Soil Science, vol. 42, no. 3, pp. 299–309. DOI: https://doi.org/10.1134/S1064229309030077
  19. MIRZAVAND, J. – MORADI-TALEBBEIGI, R. 2021. Relationships between field management, soil compaction, and crop productivity. In Archives of Agronomy and Soil Science, vol. 67, no. 5, pp. 675–686. DOI: https://doi.org/10.1080/03650340.2020.1749267
  20. ORITSEJAFOR, F. O. – OGUNKANMI, L. – ALIKU, O. O. – AIYELARI, E. O. A. 2022. Bulk density: An index for measuring critical soil compaction levels for groundnut cultivation. In Open Agriculture, vol. 7, no. 1, pp. 79–92. DOI: https://doi.org/10.1515/opag-2022-0077
  21. PENTOŚ, K. – MBAH, J. T. – PIECZARKA, K. – NIEDBAŁA, G. – WOJCIECHOWSKI, T. 2022. Evaluation of multiple linear regression and machine learning approaches to predict soil compaction and shear stress based on electrical parameters. In Applied Sciences, vol. 12, no. 17, article no. 8791. DOI: https://doi.org/10.3390/app12178791
  22. PIERCE, F. J. – LAL, R. 2017. Chapter 10. Monitoring the impact of soil erosion on crop productivity. In Soil Erosion Research Methods. New York : Routledge, pp. 235–263. ISBN 9780203739358. DOI: https://doi.org/10.1201/9780203739358
  23. PRIORI, S. – PELLEGRINI, S. – VIGNOZZI, N. – COSTANTINI, E. A. C. 2021. Soil physical-hydrological degradation in the root-zone of tree crops: Problems and solutions. In Agronomy, vol. 11, no. 1, article no. 68. DOI: https://doi.org/10.3390/agronomy11010068
  24. PULIDO-MONCADA, M. – SCHJØNNING, P. – LABOURIAU, R. – MUNKHOLM, L. J. 2020. Residual effects of compaction on the subsoil pore system – A functional perspective. In Soil Science Society of America Journal, vol. 84, no. 3, pp. 717–730. DOI: https://doi.org/10.1002/saj2.20061
  25. ROUABHI, A. – LAOUAR, A. – MEKHLOUF, A – DHEHIBI, B. 2018. What are the factors affecting no-till adoption in the farming system of Sétif Province in Algeria? In Turkish Journal of Agriculture – Food Science and Technology, vol. 6, no. 6, pp. 636–641. DOI: https://doi.org/10.24925/turjaf.v6i6.636-641.1343
  26. SHAHEB, M. R. – VENKATESH, R. – SHEARER, S. A. 2021. A review on the effect of soil compaction and its management for sustainable crop production. In Journal of Biosystems Engineering, vol. 46, pp. 417–439. DOI: https://doi.org/10.1007/s42853-021-00117-7
  27. SUDDUTH, K. A. – HUMMEL, J. W. – DRUMMOND, S. T. 2004. Comparison of the Veris Profiler 3000 to an ASAE-standard penetrometer. In Applied Engineering in Agriculture, vol. 20, no. 5, pp. 535–541.
  28. SVECHNIKOV, P. G. – TROYANOVSKAYA, I. P. 2019. Tractor plough designing with specified tillage quality. In IOP Conference Series: Earth and Environmental Science, vol. 341, article no. 012119. DOI: https://doi.org/10.1088/1755-1315/341/1/012119
  29. SYROMYATNIKOV, Y. – SEMENENKO, I. – MAKSIMOVICH, K. – TROYANOVSKAYA, I. – KARNAUKHOV, A. – OREKHOVSKAYA, A. – VOINASH, S. 2023. Influence of agrotechnical practices and sowing time in various weather on soybean yield. In Acta Technologica Agriculturae, vol. 26, no. 1, pp. 9–16. DOI: https://doi.org/10.2478/ata-2023-0002
  30. SYROMYATNIKOV, Y. – KUTS, A. – TROYANOVSKAYA, I. – OREKHOVSKAYA, A. – TIKHONOV, E. – SOKOLOVA, V. 2022. Transporting ability calculation of the rotor of soil-cultivating loosening and separating vehicle. In Acta Technologica Agriculturae, vol. 25, no. 2, pp. 73–78. DOI: https://doi.org/10.2478/ata-2022-0012
  31. SYROMYATNIKOV, Y. – TROYANOVSKAYA, I. – VOINASH, S. – OREKHOVSKAYA, A. – SOKOLOVA, V. – MAKSIMOVICH, K. – GALIMOV, R. – LOPAREVA, S. 2021. Productivity of tillage loosening and separating machines in an aggregate with tractors of various capacities. In Journal of Terramechanics, vol. 98, pp. 1–6. DOI: https://doi.org/10.1016/j.jterra.2021.09.002
  32. TARASENKO, B. – DROBOT, V. – TROYANOVSKAYA, I. – OREKHOVSKAYA, A. – VOINASH, S. – SOKOLOVA, V. – MAKSIMOVICH, K. – GALIMOV, R. – LOPAREVA, S. 2022. Research and development of a combined unit for tillage with a layer turnover. In Journal of Terramechanics, vol. 99, pp. 29–33. DOI: https://doi.org/10.1016/j.jterra.2021.11.002
  33. TROYANOVSKAYA, I. – GREBENSHCHIKOVA, O. – ZHITENKO, I. 2019. Process of soil destruction: experimental results. In MATEC Web of Conferences, vol. 298, article no. 00041. DOI: https://doi.org/10.1051/matecconf/201929800041
  34. VILLA-HENRIKSEN, A. – SKOU-NIELSEN, N. – MUNKHOLM, L. J. – SØRENSEN, C. A. G. – GREEN, O. – EDWARDS, G. T. C. 2021. Infield optimized route planning in harvesting operations for risk of soil compaction reduction. In Soil Use and Management, vol. 37, no. 4, pp. 810–821. DOI: https://doi.org/10.1111/sum.12654
  35. VILLENEUVE, F. – GEOFFRIAU, E. 2020. Carrot physiological disorders and crop adaptation to stress. In Carrots in Related Apiaceae Crops. Wallingford : Cabi, pp. 156–170. DOI: https://doi.org/10.1079/9781789240955.0156
  36. VOLTR, V. – WOLLNEROVÁ, J. – FUKSA, P. – HRUŠKA, M. 2021. Influence of tillage on the production inputs, outputs, soil compaction and GHG emissions. In Agriculture, vol. 11, no. 5, article no. 456. DOI: https://doi.org/10.3390/agriculture11050456
  37. WEBB, R. H. 2002. Recovery of severely compacted soils in the Mojave Desert, California, USA. In Arid Land Research and Management, vol. 16, no. 3, pp. 291–305. DOI: https://doi.org/10.1080/153249802760284829
  38. YAN, L. – ZHANG, Z. – DING, Y. – WANG, YU. – WANG, YO. – GAN, L. – PENG, X. 2021. Response of cover crop roots to soil compaction in a vertisol (Shajiang Black Soil). In Acta Pedologica Sinica, vol. 58, no. 1, pp. 140–150. DOI: https://doi.org/10.11766/trxb201909250409
  39. YUE, L. – WANG, Y. – WANG, L. – YAO, S. – CONG, C. – REN, L. – REN, L. – ZHANG, B. 2021. Impacts of soil compaction and historical soybean variety growth on soil macropore structure. In Soil and Tillage Research, vol. 214, article no. 105166. DOI: https://doi.org/10.1016/j.still.2021.105166
Language: English
Page range: 159 - 165
Published on: Aug 18, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Yurii Syromyatnikov, Irina Troyanovskaya, Ramil Zagidullin, Evgeniy Tikhonov, Alexandra Orekhovskaya, Sergey Voinash, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.