Have a personal or library account? Click to login
Use of Dynamic Time Warping for Description of Combustion Process in a Biomass Boiler Cover

Use of Dynamic Time Warping for Description of Combustion Process in a Biomass Boiler

Open Access
|Mar 2022

References

  1. BARTHA, S. – CARVALHEIRO, F. – DUARTE, L. C. – DI BERARDINO, S. – REIS, A. – VAJDA, B. – DA SILVA, M. T. L. – VELICHKO, V. 2018. A village-based integrated biorefinery model for rural areas. In 26th European Biomass Conference and Exhibition Proceedings, Florence : ETA-Florence Renewable Energies, pp. 1347–1352. ISBN 9788889407189.
  2. BUONOCORE, E. – PALETTO, A. – RUSSO, G. F. – FRANZESE, P. P. 2019. Indicators of environmental performance to assess wood-based bioenergy production: A case study in Northern Italy. In Journal of Cleaner Production, no. 221, pp. 242–248.
  3. DU, S. – WU, M. – CHEN, L. F. – CAO, W. H. – PEDRYCZ, W. 2020. Operating mode recognition of iron ore sintering process based on the clustering of time series data. In Control Engineering Practice, no. 96, article no. 104297.
  4. DILMI, M. D. – BARTHES, L. – MALLET, C. – CHAZOTTES, A. 2020. Iterative multiscale dynamic time warping (IMs-DTW): a tool for rainfall time series comparison. In International Journal of Data Science and Analytics, vol. 10, no. 1, pp. 65–79.
  5. GALBALLY, J. – GALBALLY, D. 2015. A pattern recognition approach based on DTW for automatic transient identification in nuclear power plants. In Annals of Nuclear Energy, vol. 81, pp. 287–300.
  6. GIORGINO, T. 2009. Computing and visualizing dynamic time warping alignments in R: the dtw package. In Journal of Statistical Software, vol. 31, no. 7, pp. 1–24.
  7. GOLLMER, K. – POSTEN, C. 1996. Supervision of bioprocesses using a dynamic time warping algorithm. In Control Engineering Practice, vol. 4, no. 9, pp. 1287–1295.
  8. HABIB, U. – HAYAT, K. – ZUCKER, G. 2016. Complex building’s energy system operation patterns analysis using bag of words representation with hierarchical clustering. In Complex Adaptive Systems Modeling, vol. 4, article no. 8.
  9. ITAKURA, F. 1975. Minimum prediction residual principle applied to speech recognition. In IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 23, no. 1, pp. 67–72.
  10. KAŽIMÍROVÁ, V. – KUBÍK, Ľ. – MIHINA, Š. 2020. Evaluation of properties of pellets made of swine manure. In Acta Technologica Agriculturae, vol. 23, no. 3, pp. 137–143.
  11. LEE, T. Y. – SHEN, H. W. 2009. Visualizing time-varying features with TAC-based distance fields. In IEEE Pacific Visualization Symposium, pp. 1–8.
  12. LIN, J. – LI, Y. 2009. Finding structural similarity in time series data using bag-of-patterns representation. In Scientific and Statistical Database Management, London, UK : Springer, Nature, vol. 5566, pp. 461–477. ISBN 9783642022784.
  13. MACÁK, M. – NOZDROVICKÝ, L. – HUSSEIN, A. 2015. Effect of preheating and different moisture content of input materials on durability of pellets made from different phytomass content. In Acta Technologica Agriculturae, vol. 18, no. 1, pp. 22–27.
  14. MEERT, W. – HENDRICKX, K. – VAN CRAENENDONCK, T. 2020. Wannesm/dtaidistance (Version v2.0.0). Zenodo. Available at: http://doi.org/10.5281/zenodo.3981067
  15. FAJMAN, M. – ČUPERA, J. – VOTAVA, J. 2018. Patent no. 307485 – A system for controlling the output of a solid fuel boiler as well as the outlet temperature of a heat exchange medium and a solid fuel boiler with this control system. (In Czech: Systém pro regulaci výkonu kotle na tuhá paliva a zároveň výstupní teploty teplosměnného média a kotel na tuhá paliva s tímto systémem regulace). Available at: http://isdv.upv.cz/doc/FullFiles/Patents/FullDocuments/307/307485.pdf
  16. PANOUTSOU, C. – SINGH, A. 2020. A value chain approach to improve biomass policy formation. In GCB Bioenergy, vol. 12, no. 7, pp. 464–475.
  17. PITEĽ, J. – MIŽÁKOVÁ, J. – HOŠOVSKÝ, A. 2013. Biomass combustion control and stabilization using low-cost sensors. In Advances in Mechanical Engineering, vol. 5, pp. 1–7.
  18. SAKOE, H. – CHIBA, S. 1978. Dynamic programming algorithm optimization for spoken word recognition. In IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 1, pp. 43–49.
  19. SCHÖRGHUBER, CH. – GÖLLES, M. – REICHHARTINGER, M. – HORN, M. 2020. Control of biomass grate boilers using internal model control. In Control Engineering Practice, vol. 96, article no. 104274.
Language: English
Page range: 33 - 39
Published on: Mar 3, 2022
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Martin Kucín, Martin Fajman, Adam Polcar, Jiří Čupera, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.