References
- BADRETDINOV, I. – MUDARISOV, S. – LUKMANOV, R. – PERMYAKOV, V. – IBRAGIMOV, R. – NASYROV, R. 2019. Mathematical modeling and research of the work of the grain combine harvester cleaning system. In Computers and Electronics in Agriculture, vol. 165, article no. 104966.10.1016/j.compag.2019.104966
- BENASEER, S. – MASILAMANI, P. – ALEX ALBERT, V. – GOVINDARAJ, M. – SELVARAJU, P. – BHASKARAN, M. 2018. Impact of harvesting and threshing methods on seed quality. In Agricultural Reviews, vol. 39, no. 3, pp. 183–192.
- CRAESSAERTS, C. – SAEYS, W. – MISSOTEN, B. – DE BAERDEMAEKER, J. 2007a. A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part I: Selection of relevant input variables for identification of the sieve losses. In Biosystem Engineering, vol. 98, pp. 166–175.10.1016/j.biosystemseng.2007.07.008
- CRAESSAERTS, C. – SAEYS, W. – MISSOTTERN, B. – DE BAERDEMAEKER, J. 2007b. A genetic input selection methodology for identification of the cleaning process on a combine harvester, Part II: Selection of relevant input variables for identification of material other than grain (MOG) content in the grain bin. In Biosystem Engineering, vol. 98, pp. 297–303.10.1016/j.biosystemseng.2007.07.002
- CRAESSAERTS, C. – SAEYS, W. – MISSOTERN, B. – DE BAERDEMAEKER, J. 2008. Identification of the cleaning process on combine harvesters. Part I: A fuzzy model for prediction of the material other than grain (MOG) content in the grain bin. In Biosystem Engineering, vol. 101, pp. 42–49.10.1016/j.biosystemseng.2008.05.016
- CRAESSAERTS, C. – SAEYS, W. – MISSOTERN, B. – DE BAERDEMAEKER, J. 2010. Identification of the cleaning process on combine harvesters, Part II: A fuzzy model for prediction of the sieve losses. In Biosystem Engineering, vol. 106, pp. 97–102.10.1016/j.biosystemseng.2009.11.009
- GOLPOUR, I. – KAVEH, M. – CHAYJAN, A. R. – GUINÉ, R. P. F. 2020. Optimization of infrared-convective drying of white mulberry fruit using Response Surface Methodology and development of a predictive model through Artificial Neural Network. In International Journal of Fruit Science, vol. 20, no. sup2, pp. S1015–S1035.10.1080/15538362.2020.1774474
- HUNT, D. 2001. Farm power and machinery management. 10th ed. Ames : Iowa State University Press, 368 pp. ISBN 0813817560.
- KUTZBACH, H. D. 2003. Approaches for mathematical modelling of grain separation. In Proceedings of the International Conference on Crop Harvesting and Processing. ASABE Paper no. 701P1103e.
- LIANG, Z. W. – LI, Y. M. – XU, L. Z. – ZHAO, Z. 2016. Sensor for monitoring rice grain sieve losses in combine harvesters. In Biosystems Engineering, vol. 147, pp. 51–66.10.1016/j.biosystemseng.2016.03.008
- MESRI, T. G. – ARDABILI, S. – MOSAVI, A. – ANNAMARIA, R. – VARKONYI, K. 2019. Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology. In Preprints 2019, International Conference on Global Research and Education, article no. 2019080202.
- MIRZAZADEH, A. – ABDOLLAHPOUR, S. H. – KOLAHI, E. 2021. Proposing the mathematical model of combine harvester rear losses in soybean harvesting. In Journal of Agricultural Mechanization, vol. 5, no. 2, pp. 21–28.
- MIRZAZADEH, A. – ABDOLLAHPOUR, S. H. – MOGHADDAM, V. M. 2015. Incorporating skewness and kurtosis in improvement of combine harvester cleaning system performance. In International Journal of Agriculture Innovations and Research, vol. 3, no. 5, pp. 2319–1473.
- MIRZAZADEH, A. – ABDOLLAHPOUR, S. H. – MOGHADDAM, V. M. 2011. Effects of operating parameters on threshing efficiency control the amount of threshing loss. In Journal of Sustainable Agriculture and Production Science, vol. 21.2, no. 1, pp. 57–67.
- MIU, P. I. – KUTZBACH, H. D. 2008. Modeling and simulation of grain threshing and separation in threshing unites, Part I. In Journal of Computer and Electronics in Agriculture, vol. 60, pp. 96–104.10.1016/j.compag.2007.07.003
- MOKHTOR, S. A. – EL PEBRIAN, D. – JOHARI, N. A. A. 2020. Actual field speed of rice combine harvester and its influence on grain loss in Malaysian paddy field. In Journal of the Saudi Society of Agricultural Sciences, vol. 19, no. 6, pp. 422–425.10.1016/j.jssas.2020.07.002
- MYHAN, R. – JACHIMCZYK, E. 2016. Grain separation in a straw walker unit of a combine harvester: Process model. In Biosystems Engineering, vol. 145, pp. 93–107.10.1016/j.biosystemseng.2016.03.003
- OLAWALE, O. – AKINYEMI, B. A. – ATTABO, F. 2020. Optimization of the mixing ratio for particleboard production from groundnut shell and rice husk. In Acta Technologica Agriculturae, vol. 23, no. 4, pp. 168–175.10.2478/ata-2020-0027
- ŠOTNAR, M. – POSPÍŠIL, J. – MAREČEK, J. – DOKUKILOVÁ, T. – NOVOTNÝ, V. 2018. Influence of the combine harvester parameter settings on harvest losses. In Acta Technologica Agriculturae, vol. 21, no. 3, pp. 105–108.10.2478/ata-2018-0019
- SRIVASTAVA, A. K. – GOERING, C. E. – ROHRBACH, R. P. – BUCKMASTER, D. R. 2006. Engineering principles of agricultural machines. 2nd ed. St. Joseph, Michigan : ASABE publications, 553 pp. ISBN 9781892769503.
- VALIZADEH, M. – MOGHADDAM, M. V. 2011. Experimental Designs in Agriculture. 5th ed. Tabriz : Parivar Press. ISBN 9789645714855.
- VOICU, G. – CASANDROIU, T. – STAN, G. 2007. Using the dimensional analysis for a mathematical model to prediction the seeds losses at the cleaning system of the cereals harvesting combines. In Scientific Bulletin, Series D, vol. 69, no. 4, pp. 29–39.
- WALLAYS, C. – MISSOTTEN, B. – BAERDEMAEKER, J. D. – SAEYS, W. 2009. Hyperspectral waveband selection for on-line measurement of grain cleanness. In Biosystem Engineering, vol. 104, no. 1, pp. 1–7.10.1016/j.biosystemseng.2009.05.011