Have a personal or library account? Click to login
Impacts of Automatic and Parallel Driving Systems on the Productivity of Machine-Tractor Units in the Northern Region of the Republic of Kazachstan Cover

Impacts of Automatic and Parallel Driving Systems on the Productivity of Machine-Tractor Units in the Northern Region of the Republic of Kazachstan

Open Access
|Aug 2021

References

  1. CELMS, A. – RATKEVICS, A. – BAUMANE, V. 2014. Global navigation satellite system as technical solution element of farmland processing in Latvia. In 13th International Scientific Conference “Engineering for Rural Development”: Proceedings, Jelgava, Latvia, no. 13, pp. 44–50.
  2. FINGER, R. – SWINTON, S. M. – EL BENNI, N. 2019. Precision farming at the nexus of agricultural production and the environment. In Annual Review of Resource Economics, vol. 11, pp. 313–335.
  3. From precision farming to “smart farms”. 2019. (In Russian: Ot tochnogo zemledelija do «umnyh ferm»). Available at: https://www.matritca.kz/news/62674-ottochnogo-zemledeliya-do-umnyh-ferm.html
  4. GARCIA, L. C. – VAN DER MEER, R. W. – DE SOUZA, N. M. – JUSTINO, A. – NETO, P. H. W. 2016. Seeding maneuvers using navigation system. In Engenharia Agricola, vol. 36, no. 2, pp. 361–366.
  5. JI, C. – ZHOU, J. 2014. Current situation of navigation technologies for agricultural machinery. In Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, vol. 45, no. 9, pp. 44–54.
  6. KELC, D. – STAJNKO, D. – BERK, P. – RAKUN, J. – VINDIŠ, P. – LAKOTA, M. 2019. Reduction of environmental pollution by using RTK-navigation in soil cultivation. In International Journal of Agricultural and Biological Engineering, vol. 12, no. 5, pp. 173–178.
  7. KESKIN, M. – HAN, Y. J. – DODD, R. B. 1999. A review of yield monitoring instrumentation applied to the combine harvesters for precision agriculture purposes. In 7th International Congress on Agricultural Mechanization and Energy 26–27 May 1999, pp. 426–431.
  8. LOWENBERG-DEBOER, J. A. – ERICKSON, B. B. 2019. Setting the record straight on precision agriculture adoption. In Agronomy Journal, vol. 111, no. 4, pp. 1552–1569.
  9. SALIMI, M. – POURDARBANI, R. – NOURI, B. A. 2020. Factors affecting the adoption of agricultural automation using Davis’s acceptance model (case study: Ardabil). In Acta Technologica Agriculturae, vol. 23, no. 1, pp. 30–39.
  10. Standard GOST 20915-2011: 2013. Testing of agricultural machinery. Methods for determining test conditions. 27 p.
  11. Standard GOST 31345-2007: 2008. Tractor seeders. Test methods. Impl. 1.1.2009. Moscow : FSUE, Standardinform, 53 p.
  12. Standard GOST R 53053-2008: 2009. Machines for plant protection. Sprayers. Test methods. Impl. 1.1.2009. Moscow : Standardinform, 42 p.
  13. Standard GOST 33736-2016: 2017. Machine for deep tillage. Test methods. Impl. 1.1.2018. Moscow : Standardinform, 39 p.
  14. Standard GOST 28301-2007: 2007. Combine harvesters. Test methods. Impl. 28.4.2010. Minsk : Eurasian Council for Standardization, Metrology and Certification, 53 p.
  15. Standard GOST R 52777-2007: 2007. Agricultural machinery. Methods of energy assessment. Impl. 13.11.2007. Moscow : Standardinform, 7 p.
  16. Standard GOST 24055-2016: 2018. Agricultural machinery. Methods of operational and technological assessment. Impl. 1.1.2018. Moscow : Standardinform, 39 p.
  17. Standard ST RK GOST R 53056-2010: 2010. Agricultural machinery. Methods of economic assessment. Impl. 4.10.2010. Astana : Committee for Technical Regulation and Metrology of the Ministry of Industry and Trade of the Republic of Kazakhstan, 26 p.
  18. SHARDA, A. – FULTON, J. P. – MCDONALD, T. P. 2015. Impact of response characteristics of an agricultural sprayer control system on nozzle flow stabilization under simulated field scenarios. In Computers and Electronics in Agriculture, vol. 112, pp. 139–148.
  19. SHANNON, K. D. – CLAY, D. E. – KITCHEN, N. R. 2018. Precision agriculture basics. Madison, WI : ASA, CSSA, and SSSA, 265 pp. ISBN 9780891183662.
  20. TSIRULEV, A. P. – BOROVKOVA, A. S. – IKSANOV, M. R. 2008. Implementation of the project on the development of methods for using precision farming tools for monitoring agricultural land in the Samara region: report on the implementation of scientific and technical work (interim)/Fund “Agricultural training” Kinel, 68 pp. (In Russian: Realizacija proekta po razrabotke metodiki ispol’zovanija sredstv tochnogo zemledelija dlja monitoringa sel’skohozjajstvennyh ugodij Samarskoj oblasti [Tekst]: otchet po vypolneniju nauchno-tehnicheskoj raboty (promezhutochnyj)/ Fond «Sel‘skohozjajstvennogo obuchenija»).
  21. VECCHIO, Y. – DE ROSA, M. – ADINOLFI, F. – BARTOLI, L. – MASI, M. 2020. Adoption of precision farming tools: A context-related analysis. In Land Use Policy, vol. 94, article no. 104481.
  22. YAKUSHEV, V. V. 2016. Precision farming: theory and practice. St. Petersburg, Russia : Agrophysical Research Institute of the Russian Academy of Agricultural Science, 364 pp. ISBN 9785905200311. (In Russian: Tochnoe zemledelie: Teorija i praktika).
  23. YAKUSHEV, V. P. – YAKUSHEV, V. V. 2007. Information support of precision farming: monograph. St. Petersburg, Russia : PINP RAS, 384 pp. (In Russian: Informacionnoe obespechenie tochnogo sursosberegajushhie tehnologii v zemledelii).
Language: English
Page range: 143 - 149
Published on: Aug 10, 2021
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Yurij Vladimirovich Polishchuk, Vladimir Leonidovich Astafyev, Alexey Ivanovich Derepaskin, Nikolay Vladimirovich Kostyuchenkov, Nikolay Vladimirovich Laptev, Artem Pavlovich Komarov, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.