Have a personal or library account? Click to login
Application of Percolation Theory in Thermokinetics Cover

Application of Percolation Theory in Thermokinetics

Open Access
|Jun 2020

References

  1. BHATNAGAR, P. L. – GROSS, E. P. – KROOK, M. 1954. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. In Physical Review, vol. 94, no. 3, pp. 511–525.10.1103/PhysRev.94.511
  2. BROWN, M. E. 1988. Introduction to Thermal Analysis: Techniques and Applications. London and New York (Chapman and Hall), 1988. BURNHAM, A. K. 2017. Introduction to chemical kinetics. In Global Chemical Kinetics of Fossil Fuels, pp. 25–74.10.1007/978-3-319-49634-4_2
  3. DHAUNDIYAL, A. – SINGH, S. B. 2019. Stochastic analysis of multi-reaction model for non-linear thermal history. In Acta Technologica Agriculturae, vol. 22, no. 3. pp. 91–97.10.2478/ata-2019-0017
  4. DHAUNDIYAL, A. – SINGH, S. B. – ATSU, D. – DHAUNDIYAL, R. 2019. Application of Monte Carlo simulation for energy modeling. In ACS Omega, vol. 4, no. 3, pp. 4984–4990.10.1021/acsomega.8b03442
  5. DHAUNDIYAL, A. – SINGH, S.B. 2020 The generalisation of a multi-reaction model for polynomial ramping of temperature. In J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09650-710.1007/s10973-020-09650-7
  6. DHAUNDIYAL, A. – TEWARI, P. 2017. Kinetic parameters for the thermal decomposition of forest waste using distributed activation energy model (DAEM). In Environmental and Climate Technologies, vol. 19, no. 1, pp. 15–32.10.1515/rtuect-2017-0002
  7. DHAUNDIYAL, A. – TOTH, L. 2019. Modelling of hardwood pyrolysis using the convex combination of the mass conversion points. In Journal of Energy Resources Technology, vol. 142, no. 6, pp. 061901–061910.
  8. DHAUNDIYAL, A. – TOTH, L. 2020. Modeling of Hardwood Pyrolysis Using the Convex Combination of the Mass Conversion Points. In Journal of Energy Resources Technology, Transactions of the ASME. doi: 10.1115/1.4045458.10.1115/1.4045458
  9. GALGANO, A. – DI BLASI, C. 2003. Modeling wood degradation by the unreacted-core-shrinking approximation. In Industrial and Engineering Chemistry Research, vol. 42, no. 10, pp. 2101–2111.10.1021/ie020939o
  10. GIUPPONI, G. – HARTING, J.– COVENEY, P. V. 2006. Emergence of rheological properties in lattice Boltzmann simulations of gyroid mesophases. In Europhysics Letters, vol. 73, no. 4, pp. 533–539.10.1209/epl/i2005-10438-x
  11. GUO, Z. – ZHAO, T. S. – SHI, Y. 2006. Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. In Journal of Applied Physics, vol. 99, no. 7, p. 074903.10.1063/1.2185839
  12. HABICH, J. – ZEISER, T. – HAGER, G. – WELLEIN, G. 2011. Performance analysis and optimization strategies for a D3Q19 lattice Boltzmann kernel on nVIDIA GPUs using CUDA. In Advances in Engineering Software, vol. 42, no. 5, pp. 266–272.10.1016/j.advengsoft.2010.10.007
  13. HARTING, J. – HERRMANN, H. J. – BEN-NAIM, E. 2008. Anomalous distribution functions in sheared suspensions. In Europhysics Letters, vol. 83, no. 3, p. 30001.10.1209/0295-5075/83/30001
  14. HECHT, M. – HARTING, J. 2010. Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. In Journal of Statistical Mechanics: Theory and Experiment, vol. 2010, no. 1, p. 01018.10.1088/1742-5468/2010/01/P01018
  15. HUANG, H. – KRAFCZYK, M. – LU, X. 2011. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. In Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 84, no. 4.10.1103/PhysRevE.84.046710
  16. KUTAY, M. E. – AYDILEK, A. H. – MASAD, E. 2006. Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials. In Computers and Geotechnics, vol. 33, no. 8, pp. 381–395.10.1016/j.compgeo.2006.08.002
  17. LI, L. – MEI, R. – KLAUSNER, J. F. 2013. Boundary conditions for thermal lattice Boltzmann equation method. In Journal of Computational Physics, vol. 237, pp. 366–395.10.1016/j.jcp.2012.11.027
  18. NEKOVEE, M. – CONEVEY, P. V. – CHEN, H. – BOGHOSIAN, B. M. 2000. Lattice-Boltzmann model for interacting amphiphilic fluids. In Physical Review, vol. E62, no. 6 B, pp. 8282–8294.10.1103/PhysRevE.62.8282
  19. OLUOTI, K. – DODDAPANENI, T. R. K. – RICHARDS, T. E. – KANAGASABAPATHI, D. 2014. Evaluation of the pyrolysis and gasification kinetics of tropical wood biomass. In BioResources, vol. 9, no. 2, pp. 2179–2190.10.15376/biores.9.2.2179-2190
  20. SERIO, M. A. – HAMBLEN, D. G. – MARKHAM, J. R. – SOLOMON, P. R. 1987. Kinetics of volatile product evolution in coal pyrolysis: Experiment and theory. In Energy and Fuels, vol. 1, no. 2, pp. 138–152.10.1021/ef00002a002
  21. WILK, M. – MAGDZIARZ, A. – GAJEK, M. – ZAJEMSKA, M. – JAYARAMAN, K. – GOKALP, I. 2017. Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques. In Bioresource Technology, vol. 243, pp. 304–314.10.1016/j.biortech.2017.06.116
Language: English
Page range: 73 - 80
Published on: Jun 5, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Alok Dhaundiyal, Suraj Bhan Singh, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.