Have a personal or library account? Click to login
Stochastic Analysis of Multi-Reaction Model for Non-Linear Thermal History Cover

Stochastic Analysis of Multi-Reaction Model for Non-Linear Thermal History

Open Access
|Aug 2019

References

  1. ANTHONY, D. B. – HOWARD, J. B. 1976. Coal devolatilization and hydrogastification. In Journal of American Chemical Society, vol. 22, no. 4, pp. 625–656.10.1002/aic.690220403
  2. BURNHAM, A. K. 2017. Introduction to chemical kinetics. In Global Chemical Kinetics of Fossil Fuels, pp. 25–74.10.1007/978-3-319-49634-4_2
  3. BURNHAM, A. K. 2014. Obtaining reliable phenomenological chemical kinetic models for real-world applications. In Thermochimica Acta, vol. 597, pp. 35–40.10.1016/j.tca.2014.10.006
  4. CAI, J. M. – Li, T. – LIU, R. A. 2007. A critical study of the Miura-Maki integral method for the estimation of the kinetic parameters of the distributed activation energy model. In Journal of Bioresource Technology, vol. 102, pp. 3894–3899.10.1016/j.biortech.2010.11.110
  5. DHAUNDIYAL, A – SINGH, S. B. – ATSU, D. – DHAUNDIYAL, R. 2019. Application of Monte Carlo simulation for energy modelling. In Journal of American Chemical Society (Omega), vol. 4, no. 3, pp. 4984–4990.10.1021/acsomega.8b03442
  6. DHAUNDIYAL, A. – B. SINGH, S. 2018a. Mathematical insight to non-isothermal pyrolysis of pine needles for different probability distribution functions. In Biofuels, vol. 9, no. 5, pp. 647–658.10.1080/17597269.2017.1329495
  7. DHAUNDIYAL, A. – SINGH, S. B – HAMON, M. 2018b. Study of distributed activation energy model using bivariate distribution function, f (E1, E2). In Thermal Science and Engineering Progress, vol. 5, pp. 388–404.10.1016/j.tsep.2018.01.009
  8. DHAUNDIYAL, A. – SINGH, S. B. 2017a. Asymptotic approximations to the isothermal pyrolysis of deodara leaves using gamma distribution. In Journal of Universitas Scientiarum, vol. 22, no. 3, pp. 263–284.10.11144/Javeriana.SC22-3.aatt
  9. DHAUNDIYAL, A. – SINGH, S. B. 2017b. Approximations to the non-isothermal distributed activation energy model for biomass pyrolysis using the Rayleigh distribution. In Acta Technologica Agriculturae, vol. 20, no. 3, pp.78–84.10.1515/ata-2017-0016
  10. DHAUNDIYAL, A. – TEWARI, P. 2017. Kinetic parameters for the thermal decomposition of forest waste using distributed activation energy model (DAEM). In Environmental and Climate Technologies, vol. 19, no. 1, pp. 15–32.10.1515/rtuect-2017-0002
  11. LI, Z. – LIU, C. – CHEN, Z. – QUAIN, J. – ZHAO, W. – ZHU, Q. 2009. Analysis of coals and biomass pyrolysis using the distributed activation energy model. In Bioresource Technology, vol. 100, no. 2, pp. 948–952.10.1016/j.biortech.2008.07.032
  12. MIURA, K. 1995. A new and simple method to estimate f(E) and ko(E) in the distributed activation energy model from three sets of experimental data. In Journal of Energy and Fuels, vol. 9, no. 2, pp. 302–307.10.1021/ef00050a014
  13. YAN, J. H. – ZHU, H. M. – JIANG, X. G. – CHI, Y. – CEN, K. F. 2009. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. In Journal of Hazardous Materials, vol. 162, no. 2–3, pp. 646–651.10.1016/j.jhazmat.2008.05.077
Language: English
Page range: 92 - 98
Published on: Aug 8, 2019
Published by: Slovak University of Agriculture in Nitra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Alok Dhaundiyal, Suraj Bhan Singh, published by Slovak University of Agriculture in Nitra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.