Have a personal or library account? Click to login
Application of artificial intelligence and GIS for integrated modeling of processes and factors related to the greening of urban environments Cover

Application of artificial intelligence and GIS for integrated modeling of processes and factors related to the greening of urban environments

Open Access
|Nov 2025

References

  1. Phong, T.V., Pham, B.T., Trinh, P.T., Ly, H.-B., Vu, Q.H., Ho, L.S., Le, H.V., Phong, L.H., Avand, M. and Prakash, I., Groundwater Potential Mapping Using GIS-Based Hybrid Artificial Intelligence Methods. Groundwater, 2021, 59, 745-760, https://doi.org/10.1111/gwat.13094.
  2. Abarca-Alvarez, Francisco Javier; Campos-Sanchez, Francisco Sergio, Reinoso-Bellido, Rafael. Methodology of Decision Support through GIS and Artificial Intelligence: Implementation for Demographic Characterization of Andalusia based on Dwelling. Estoa [online]. 2017, 6(11), 39-64, https://doi.org/10.18537/est.v006.n011.a03.
  3. Liu, X.; Lao, C.; Li, X. et al. An integrated approach of remote sensing, GIS and swarm intelligence for zoning protected ecological areas. Landscape Ecol, 2012, 27, 447–463, https://doi.org/10.1007/s10980-011-9684-1.
  4. Denis, V.; Hazlett, R.; Stevens, R.; Bornmalm, L., Sustainable Agriculture, GIS and Artificial Intelligence, International Multidisciplinary Scientific Geo Conference: SGEM; Sofia, 2022, Vol. 22, Issue 5.1, DOI:10.5593/sgem2022/5.1/s20.056.
  5. Pastor, J.; Johnston, C.A., Using Simulation Models and Geographic Information Systems to Integrate Ecosystem and Landscape Ecology. In: Naiman, R.J. (eds) Watershed Management. Springer, New York, NY, 1992, https://doi.org/10.1007/978-1-4612-4382-3_11.
  6. Li, Z., & Ning, H., Autonomous GIS: the next-generation AI-powered GIS. International Journal of Digital Earth, 2023, 16(2), 4668–4686, https://doi.org/10.1080/17538947.2023.2278895.
  7. El-Hallaq, M. & Habboub, M., Using GIS for Time Series Analysis of the Dead Sea from Remotely Sensing Data. Open Journal of Civil Engineering, 2014, 04, 386-396, 10.4236/ojce.2014.44033.
  8. Ly, H.-B.; Le, L.M.; Phi, L.V.; Phan, V.-H.; Tran, V.Q.; Pham, B.T.; Le, T.-T.; Derrible, S., Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors, 2019, 19, 4941, https://doi.org/10.3390/s19224941.
  9. Tella, A.; Balogun, AL., GIS-based air quality modelling: spatial prediction of PM10 for Selangor State, Malaysia using machine learning algorithms. Environmental Science and Pollution Research, 2022, 29, 86109–86125, https://doi.org/10.1007/s11356-021-16150-0.
  10. Soleimany, A.; Grubliauskas, R.; Šerevičienė, V., Application of satellite data and GIS services for studying air pollutants in Lithuania (case study: Kaunas city). Air Qual Atmos Health, 2021, 14, 411–429, https://doi.org/10.1007/s11869-020-00946-z.
  11. Goswami, T.; Sarma, H., Intelligent Computing for Air Pollution Monitoring Using GIS, Remote Sensing and Machine Learning. In: Hitendra Sarma, T., Sankar, V., Shaik, R. (eds) Emerging Trends in Electrical, Communications, and Information Technologies. Lecture Notes in Electrical Engineering, 2020, vol 569, Springer, Singapore, https://doi.org/10.1007/978-981-13-8942-9_12.
  12. Zhalehdoost, A., & Taleai, M., A Review of the Application of Machine Learning and Geospatial Analysis Methods in Air Pollution Prediction. Pollution, 2022, 8(3), 904-933, doi: 10.22059/poll.2022.336044.1300.
  13. Briggs, D., The Role of Gis: Coping with Space (And Time) in Air Pollution Exposure Assessment. Journal of Toxicology and Environmental Health, Part A, 2005, 68(13–14), 1243–1261. https://doi.org/10.1080/15287390590936094.
  14. Briggs, D. J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; … Van der Veen, A., Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 1997, 11(7), 699–718, https://doi.org/10.1080/136588197242158.
  15. Rahman, M.R.; Lateh, H., Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theoretical and Applied Climatology, 2017, 128, 27–41, https://doi.org/10.1007/s00704-015-1688-3.
  16. Salcedo, R.L.R.; Alvim Ferraz, M.C.M.; Alves, C.A.; Martins, F.G., Time-series analysis of air pollution data, Atmospheric Environment, 1999, 33(15), 2361-2372, https://doi.org/10.1016/S1352-2310(99)80001-6.
  17. He Li, Xiao-Long Xu, Da-Wei Dai, Zhen-Yu Huang, Zhuang Ma, Yan-Jun Guan, Air pollution and temperature are associated with increased COVID-19 incidence: A time series study, International Journal of Infectious Diseases, 2020, 97, 278-282, https://doi.org/10.1016/j.ijid.2020.05.076.
  18. Akbari, M.; Zahmatkesh, H.; Eftekhari, M., A GIS-Based System for Real-Time Air Pollution Monitoring and Alerting Based on OGC Sensors Web Enablement Standards, Pollution, 2021, 7, 25-41. https://doi.org/10.22059/poll.2020.296938.741.
  19. Shareef, M.; Husain, T.; Alharbi, B., Optimization of Air Quality Monitoring Network Using GIS Based Interpolation Techniques. Journal of Environmental Protection, 2016, 7, 895-911. https://doi.org/10.4236/jep.2016.76080.
  20. Andrei, Nistor & Ioanid, Alexandra. Potential use of artificial intelligence and geospatial analysis in environmental monitoring: Air quality in a large city. International Conference of Management and Industrial Engineering, 2023, 11, 369-376, https://doi.org/10.56177/11icmie2023.31.
  21. Hochreiter, S.; Schmidhuber, J., Long short-term memory. Neural Computation, 1997, 9(8), 1735–1780.
  22. Marinov, E.; Petrova-Antonova, D.; Malinov, S., Time Series Forecasting of Air Quality: A Case Study of Sofia City, Atmosphere, 2022, 13(5), 788, https://doi.org/10.3390/atmos13050788.
  23. Liu, P.W.G., Simulation of the daily average PM10 concentrations at Ta-Liao with Box–Jenkins time series models and multivariate analysis. Atmospheric Environment, 2009, 43, 2104–2113.
  24. Zhang, L.; Lin, J.; Qiu, R.; Hu, X.; Zhang, H.; Chen, Q.; Wang, J., Trend analysis and forecast of PM2. 5 in Fuzhou, China using the ARIMA model, Ecological Indicators, 2018, 95, 702–710.
DOI: https://doi.org/10.2478/asn-2025-0014 | Journal eISSN: 2603-347X | Journal ISSN: 2367-5144
Language: English
Page range: 1 - 16
Published on: Nov 21, 2025
Published by: Konstantin Preslavski University of Shumen
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Radoslav Miltchev, Galin Milchev, Miroslava Nikolova, published by Konstantin Preslavski University of Shumen
This work is licensed under the Creative Commons Attribution 3.0 License.