References
- Phong, T.V., Pham, B.T., Trinh, P.T., Ly, H.-B., Vu, Q.H., Ho, L.S., Le, H.V., Phong, L.H., Avand, M. and Prakash, I., Groundwater Potential Mapping Using GIS-Based Hybrid Artificial Intelligence Methods. Groundwater, 2021, 59, 745-760, https://doi.org/10.1111/gwat.13094.
- Abarca-Alvarez, Francisco Javier; Campos-Sanchez, Francisco Sergio, Reinoso-Bellido, Rafael. Methodology of Decision Support through GIS and Artificial Intelligence: Implementation for Demographic Characterization of Andalusia based on Dwelling. Estoa [online]. 2017, 6(11), 39-64, https://doi.org/10.18537/est.v006.n011.a03.
- Liu, X.; Lao, C.; Li, X. et al. An integrated approach of remote sensing, GIS and swarm intelligence for zoning protected ecological areas. Landscape Ecol, 2012, 27, 447–463, https://doi.org/10.1007/s10980-011-9684-1.
- Denis, V.; Hazlett, R.; Stevens, R.; Bornmalm, L., Sustainable Agriculture, GIS and Artificial Intelligence, International Multidisciplinary Scientific Geo Conference: SGEM; Sofia, 2022, Vol. 22, Issue 5.1, DOI:10.5593/sgem2022/5.1/s20.056.
- Pastor, J.; Johnston, C.A., Using Simulation Models and Geographic Information Systems to Integrate Ecosystem and Landscape Ecology. In: Naiman, R.J. (eds) Watershed Management. Springer, New York, NY, 1992, https://doi.org/10.1007/978-1-4612-4382-3_11.
- Li, Z., & Ning, H., Autonomous GIS: the next-generation AI-powered GIS. International Journal of Digital Earth, 2023, 16(2), 4668–4686, https://doi.org/10.1080/17538947.2023.2278895.
- El-Hallaq, M. & Habboub, M., Using GIS for Time Series Analysis of the Dead Sea from Remotely Sensing Data. Open Journal of Civil Engineering, 2014, 04, 386-396, 10.4236/ojce.2014.44033.
- Ly, H.-B.; Le, L.M.; Phi, L.V.; Phan, V.-H.; Tran, V.Q.; Pham, B.T.; Le, T.-T.; Derrible, S., Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors, 2019, 19, 4941, https://doi.org/10.3390/s19224941.
- Tella, A.; Balogun, AL., GIS-based air quality modelling: spatial prediction of PM10 for Selangor State, Malaysia using machine learning algorithms. Environmental Science and Pollution Research, 2022, 29, 86109–86125, https://doi.org/10.1007/s11356-021-16150-0.
- Soleimany, A.; Grubliauskas, R.; Šerevičienė, V., Application of satellite data and GIS services for studying air pollutants in Lithuania (case study: Kaunas city). Air Qual Atmos Health, 2021, 14, 411–429, https://doi.org/10.1007/s11869-020-00946-z.
- Goswami, T.; Sarma, H., Intelligent Computing for Air Pollution Monitoring Using GIS, Remote Sensing and Machine Learning. In: Hitendra Sarma, T., Sankar, V., Shaik, R. (eds) Emerging Trends in Electrical, Communications, and Information Technologies. Lecture Notes in Electrical Engineering, 2020, vol 569, Springer, Singapore, https://doi.org/10.1007/978-981-13-8942-9_12.
- Zhalehdoost, A., & Taleai, M., A Review of the Application of Machine Learning and Geospatial Analysis Methods in Air Pollution Prediction. Pollution, 2022, 8(3), 904-933, doi: 10.22059/poll.2022.336044.1300.
- Briggs, D., The Role of Gis: Coping with Space (And Time) in Air Pollution Exposure Assessment. Journal of Toxicology and Environmental Health, Part A, 2005, 68(13–14), 1243–1261. https://doi.org/10.1080/15287390590936094.
- Briggs, D. J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; … Van der Veen, A., Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 1997, 11(7), 699–718, https://doi.org/10.1080/136588197242158.
- Rahman, M.R.; Lateh, H., Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model. Theoretical and Applied Climatology, 2017, 128, 27–41, https://doi.org/10.1007/s00704-015-1688-3.
- Salcedo, R.L.R.; Alvim Ferraz, M.C.M.; Alves, C.A.; Martins, F.G., Time-series analysis of air pollution data, Atmospheric Environment, 1999, 33(15), 2361-2372, https://doi.org/10.1016/S1352-2310(99)80001-6.
- He Li, Xiao-Long Xu, Da-Wei Dai, Zhen-Yu Huang, Zhuang Ma, Yan-Jun Guan, Air pollution and temperature are associated with increased COVID-19 incidence: A time series study, International Journal of Infectious Diseases, 2020, 97, 278-282, https://doi.org/10.1016/j.ijid.2020.05.076.
- Akbari, M.; Zahmatkesh, H.; Eftekhari, M., A GIS-Based System for Real-Time Air Pollution Monitoring and Alerting Based on OGC Sensors Web Enablement Standards, Pollution, 2021, 7, 25-41. https://doi.org/10.22059/poll.2020.296938.741.
- Shareef, M.; Husain, T.; Alharbi, B., Optimization of Air Quality Monitoring Network Using GIS Based Interpolation Techniques. Journal of Environmental Protection, 2016, 7, 895-911. https://doi.org/10.4236/jep.2016.76080.
- Andrei, Nistor & Ioanid, Alexandra. Potential use of artificial intelligence and geospatial analysis in environmental monitoring: Air quality in a large city. International Conference of Management and Industrial Engineering, 2023, 11, 369-376, https://doi.org/10.56177/11icmie2023.31.
- Hochreiter, S.; Schmidhuber, J., Long short-term memory. Neural Computation, 1997, 9(8), 1735–1780.
- Marinov, E.; Petrova-Antonova, D.; Malinov, S., Time Series Forecasting of Air Quality: A Case Study of Sofia City, Atmosphere, 2022, 13(5), 788, https://doi.org/10.3390/atmos13050788.
- Liu, P.W.G., Simulation of the daily average PM10 concentrations at Ta-Liao with Box–Jenkins time series models and multivariate analysis. Atmospheric Environment, 2009, 43, 2104–2113.
- Zhang, L.; Lin, J.; Qiu, R.; Hu, X.; Zhang, H.; Chen, Q.; Wang, J., Trend analysis and forecast of PM2. 5 in Fuzhou, China using the ARIMA model, Ecological Indicators, 2018, 95, 702–710.