Have a personal or library account? Click to login
The Influence of Soil Physico-Mechanical Properties on Plant Growth and Subsoil Water Movement Cover

The Influence of Soil Physico-Mechanical Properties on Plant Growth and Subsoil Water Movement

Open Access
|Jul 2024

References

  1. Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environment International, 2019, 132, 105078, doi:10.1016/j.envint.2019.105078.
  2. Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 2019, 134, 187-196, http://doi.org/10.1016/j.soilbio.2019.03.030.
  3. Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 2013, 33:291-309, http://doi.org/10.1007/s13593-011-0071-8.
  4. Pinton, R.; Varanini, Z.; Nannipieri, P. The rhizosphere: Biochemistry and organic substances at the Soil-Plant interface. Marcel Dekker, New York, 2001.
  5. Teixeira da Silva, R.; Fleskens, L.; van Delden, H.; van der Ploeg, M. Incorporating soil ecosystem services into urban planning: status, challenges and opportunities. Landscape Ecology, 2018, 33, 1087–1102, https://doi.org/10.1007/s10980-018-0652-x.
  6. Pouyat, R.V.; Day, S.D.; Brown, S.; Schwarz, K.; Shaw, R.E.; Katalin; Szlavecz, K.; Trammell, T.L.E.; Yesilonis, I.D. Urban Soils. 127-144. In: Pouyat, R.; Page-Dumroese, D.; Patel-Weynand, T.; Geiser, L. (Eds). Forest and Rangeland Soils of the United States Under Changing Conditions. Springer, Cham. 2020, https://doi.org/10.1007/978-3-030-45216-2_7.
  7. Kraft, N.J.B.; Godoy, O.; Levine, J.M. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences, 2015, 112, 797-802. http://doi.org/10.1073/pnas.1413650112.
  8. Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philosophical Transactions of the Royal Society B, 2014, 369, 20120273, http://doi.org/10.1098/rstb.2012.0273.
  9. Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Annual Review of Phytopathology, 2005, 43, 83-116, http://doi.org/10.1146/annurev.phyto.43.113004.133839.
  10. Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 2011, 108, 20260-20264, http://doi.org/.
  11. Taylor, J.R.N., Kini, F. Cereal Biofortification: Strategies, Challenges, and Benefits. Cereal Foods World, 2012, 57(4), 165–169.
  12. Poveda, K.; Steffan-Dewenter, I.; Scheu, S.; Tscharntke, T. Effects of below-and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia, 2003, 135, 601–605, doi: 10.1007/s00442-003-1228-1.
  13. Eviner, V.T.; Hawkes, C.V. Embracing variability in the application of plant–soil interactions to the restoration of communities and ecosystems. Restoration Ecology, 2008, 16, 713–729.
  14. Halpern, B.S.; Boettiger, C.; Dietze, M.C.; Gephart, J.A.; Gonzalez, P.; Grimm, N.B.; Groffman, P.M. et al. Priorities for Synthesis Research in Ecology and Environmental Science. Ecosphere, 2023, 14(1), e4342, https://doi.org/10.1002/ecs2.4342.
  15. Bairey, E.; Kelsic, E.D.; Kishony, R. High-order species interactions shape ecosystem diversity. Nature Communications, 2016, 7, 12285, http://doi.org/10.1038/ncomms12285.
  16. Kos, M.; Tuijl, M.A.; Roo, J.; Mulder, P.P.; Bezemer, T.M. Species-specific plant–soil feedback effects on above-ground plant–insect interactions. Journal of Ecology, 2015, 103, 904–914, doi: 10.1111/1365-2745.12402.
  17. Van der Putten, W.H.; Bardgett, R.D.; Bever, J.D.; Bezemer, T.M.; Casper, B.B.; Fukami, T. et al. Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265–276, doi: 10.1111/1365-2745.12054.
  18. Mathieu, A.; Cournède, P.H.; Letort, V.; Barthelemy, D.; de Reffye, P. A dynamic model of plant growth with interactions between development and functional mechanisms to study plant structural plasticity related to trophic competition. Annals of Botany, 2009, 103, 1173–1186.
  19. Wu, L.; Le Dimet, F.X.; de Reffye, P.; Hu, B.G.; Cournède, P.H.; Kang, M.Z. An optimal control methodology for plant growth – case study of water supply problem of sunflower. Mathematics and Computers in Simulation, 2012, 82, 909–923.
  20. Barthélémy, D.; Caraglio, Y. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annals of Botany, 2007, 99, 375–407.
  21. Jochem, B.E.; Letort, V.; Renton, M.; Kang, M. Computational botany: advancing plant science through functional–structural plant modelling, Annals of Botany, 2018, 121(5), 767-772, https://doi.org/10.1093/aob/mcy050.
  22. Cournède, P.; Letort, V.; Mathieu, A. et al. Some parameter estimation issues in functional–structural plant modelling. Mathematical Modelling of Natural Phenomena, 2011, 6, 133–159.
  23. Sasan, R.K., Bidochka, M.J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 2012, 99, 101–107, doi: 10.3732/ajb.1100136.
  24. Pineda, A.; Zheng, S.J.; van Loon, J.J.; Pieterse, C.M.; Dicke, M. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science, 2010, 15, 507–514, doi: 10.1016/j.tplants.2010.05.007.
  25. Chesson, P. Updates on mechanisms of maintenance of species diversity. Journal of Ecology, 2018, 106, 1773-1794. http://doi.org/10.1111/1365-2745.13035.
  26. Stavrinidou, E.; Gabrielsson, R.; Gomez, E.; Crispin, X.; Nilsson, O.; Simon, D.T.; Berggren, M. Electronic plants. Science Advances, 2015, 1, e1501136.
  27. Hubbell, S.P. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA, 2001.
  28. Megías, A.G.; Müller, C. Root herbivores and detritivores shape above-ground multitrophic assemblage through plant-mediated effects. Journal of Animal Ecology, 2010, 79, 923–931. doi: 10.1111/j.1365-2656.2010.01681.x.
  29. Baluška, F.; Mancuso, S.; Volkmann, D.; Barlow, P.W. Root apices as plant command centres: the unique ‘brain-like’ status of the root apex transition zone. Biologia, 2004, 59, 9-17.
  30. Poorter, H.; Bühler, J.; van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 2012, 39, 839–850, doi: 10.1071/FP12049.
  31. Hallé, F.; Oldeman, R.; Tomlinson, P. Tropical trees and forests, an architectural analysis. New York, Springer, 1978.
  32. Chen, Z.; Tian, Y.; Zhang, Y.; Song, B.; Li, H.; Chen, Z. Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecological Engineering, 2016, 92, 243-250, http://doi.org/10.1016/j.ecoleng.2016.04.001.
  33. Yan, H.; Kang, M.Z.; De Reffye, P.; Dingkuhn, M. A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany, 2004, 93, 591–602.
  34. Baetz, U.; Martinoia, E. Root exudates: The hidden part of plant defense. Trends in Plant Science, 2014, 19, 90-98, http://doi.org/10.1016/j.tplants.2013.11.006.
  35. Department of Agriculture. Irrigation guide. National Engineering Handbook - Part 652. 1997. Website: https://directives.sc.egov.usda.gov/17837.wba.
  36. Malamy, J.E. Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment, 2005, 28, 67-77. DOI: 10.1111/j.1365-3040.2005.013e06.x.
  37. Nibau, C.; Gibbs, D.; Coates, J. Branching out in new directions: the control of root architecture by lateral root formation. New Phytologist, 2008, 179, 595-614, doi: 10.1111/j.1469-8137.2008.02472.x.
  38. Wu, S.; Sun, X.; Tan, Q.; Hu, Ch. Molybdenum improves water uptake via extensive root morphology, aquaporin expressions and increased ionic concentrations in wheat under drought stress. Environmental and Experimental Botany, 2018, 157, 241-249, doi:10.1016/j.envexpbot.2018.10.013.
  39. Xiong, P.; Zhang, Z.; Peng, X. Root and root‐derived biopore interactions in soils: A review, Journal of Plant Nutrition and Soil Science, 2022, 185(5), 643-655, doi:10.1002/jpln.202200003.
  40. Guhra, T.; Stolze, K.; Totsche, K.U. Pathways of biogenically excreted organic matter into soil aggregates, Soil Biology and Biochemistry, 2022, 164, 108483, doi:10.1016/j.soilbio.2021.108483.
  41. Morrison, F.A. Understanding Rheology, Oxford University Press, ISBN 0-19-514166-0, 2001.
  42. Chaminé, H.I., Pereira, A.J.S.C., Teodoro, A.C. et al. Remote sensing and GIS applications in Earth and environmental systems sciences. SN Applied Science, 2021, 3, Article 870, https://doi.org/10.1007/s42452-021-04855-3.
  43. Windisch, S.; Sommermann, L.; Babin, D.; Chowdhury, S.P.; Grosch, R.; Moradtalab, N.; Walker, F.; Hoglinger, B.; El-Hasan, A.; Armbruster. W. et al. Impact of Long-Term organic and mineral fertilization on rhizosphere metabolites, root–microbial interactions and plant health of lettuce. Frontiers in Microbiology, 2021, 11, Article 597745, http://doi.org/10.3389/fmicb.2020.597745.
  44. Huang, R.; Mcgrath, S.P.; Hirsch, P.R.; Clark, I.M.; Storkey, J.; Wu, L.; Zhou, J.; Liang, Y. Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microbial Biotechnology, 2019, 12, 1464-1475. http://doi.org/10.1111/1751-7915.13487.
  45. Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms - a review. Soil Biology & Biochemistry, 2014, 75, 54-63, http://doi.org/10.1016/j.soilbio.2014.03.023.
DOI: https://doi.org/10.2478/asn-2024-0009 | Journal eISSN: 2603-347X | Journal ISSN: 2367-5144
Language: English
Page range: 1 - 19
Published on: Jul 29, 2024
Published by: Konstantin Preslavski University of Shumen
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Khaoula Khelalfa, Houssam Khelalfa, published by Konstantin Preslavski University of Shumen
This work is licensed under the Creative Commons Attribution 3.0 License.