Have a personal or library account? Click to login
Thermodynamic solid-liquid equilibrium model for mixed systems HF-NaF-H2O and HF-KF-H2O up to 2 m HF at T = 25oC Cover

Thermodynamic solid-liquid equilibrium model for mixed systems HF-NaF-H2O and HF-KF-H2O up to 2 m HF at T = 25oC

Open Access
|Mar 2023

References

  1. André, L.; Christov, C.; Lassin, A.; Azaroual, M., Water Rock Interaction [WRI14], Thermodynamic behavior of FeCl3-H2O and HCl-FeCl3-H2O systems - A Pitzer Model at 25°C, Procedia Earth and Planetary Science, 2013, 7, 14-18.
  2. André, L.; Christov, C.; Lassin, A.; Azaroual, M., A thermodynamic model for solution behavior and solid-liquid equilibrium in Na-K-Mg-Ca-Al(III)-Fe(III)-Cr(III)-Cl-H2O system from low to very high concentration at 25°C, Acta Scientifica Naturalis, 2019, 6(1), 26-36. DOI: https://doi.org/10.2478/asn-2019-0004.
  3. Balarew, C.; Rabadjieva, D.; Tepavitcharova, S.; Christov, C.; Angelova, O., Study of (m1RbBr+m2NiBr2)(aq), where m denotes molality, at the temperature 298.15 K, J. Chem. Thermodynamics, 1998, 30, 1087-1094.
  4. Balarew, C.; Rabadjieva, D.; Tepavitcharova, S.; Christov, C.; Angelova, O., Thermodynamic study of the aqueous rubidium and manganese bromide system, J. Solution Chem., 1999, 28, 949-958.
  5. Barkov, D.; Christov, C.; Ojkova, T., Thermodynamic study of (m1Cs2SeO4 + m2NiSeO4)(aq), where m denotes molality, at the temperature 298.15 K, J. Chem. Thermodynamics, 2001, 33, 1073-1080. https://doi.org/10.1006/jcht.2000.0818.
  6. Christov, C., Thermodynamic study of (b1RbCl + b2MeCl2)(aq), where b denotes molality and Me denotes Mn, Co, NI or Cu, at the temperature 298.15 K, on the basis of Pitzer’s model, J. Chem. Thermodynamics, 1994, 26, 1071-1080.
  7. Christov, C., Thermodynamic study of the co-crystallization of 2RbCl.NiCl2.2H2O and 2RbCl.MnCl2.2H2O at the temperature 298.15 K, J. Chem. Thermodynamics, 1996, 28, 743-752. https://doi.org/10.1006/jcht.1996.0068.
  8. Christov, C., Thermodynamics of formation of solid solutions of the type (Me, Me’) SeO4.6H2O (Me, Me’ = Mg, Co, Ni, Zn) from aqueous solutions, J. Chem. Thermodynamics, 1997, 29, 481-489. https://doi.org/10.1006/jcht.1996.0181.
  9. Christov, C., Study of (m1KCl + m2MeCl2)(aq), and (m1K2SO4 + m2MeSO4)(aq) where m denotes molality and Me denotes Cu or Ni, at the temperature 298.15 K, J. Chem. Thermodynamics, 1999, 31, 71-83. https://doi.org/10.1006/jcht.1998.0419.
  10. Christov, C., Thermodynamic study of the Na-Cu-Cl-SO4 -H2O system at the temperature 298.15 K, J. Chem. Thermodynamics, 2000, 32, 285-295. https://doi.org/10.1006/jcht.1999.0564.
  11. Christov, C., Thermodynamic study of the NaCl-Na2SO4-Na2Cr2O7-H2O system at the temperature 298.15 K, CALPHAD, 2001, 25, 11-17. https://doi.org/10.1016/S0364-5916(01)00025-6.
  12. Christov, C., Thermodynamics of formation of ammonium, sodium, and potassium alums and chromium alums, CALPHAD, 2002a, 26, 85-94. https://doi.org/10.1016/S0364-5916(02)00026-3.
  13. Christov, C., Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums, CALPHAD, 2002b, 26, 341-352. https://doi.org/10.1016/S0364-5916(02)00049-4.
  14. Christov, C., Thermodynamic study of the co-crystallization of ammonium, sodium and potassium alums and chromium alums, CALPHAD, 2003, 27, 153-160. https://doi.org/10.1016/S0364-5916(03)00046-4.
  15. Christov, C., Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na+K+Mg+Cl+SO4+H2O} system at T=298.15 K, J. Chem. Thermodynamics, 2004, 36, 223-235. https://doi.org/10.1016/j.jct.2003.11.010.
  16. Christov, C., Thermodynamics of formation of double salts and solid solutions from aqueous solutions, J. Chem. Thermodynamics, 2005, 37, 1036-1060. https://doi.org/10.1016/j.jct.2005.01.008.
  17. Christov, C., An isopiestic study of aqueous NaBr and KBr at 50oC. Chemical Equilibrium model of solution behavior and solubility in the NaBr-H2O, KBr-H2O and Na-K-Br-H2O systems to high concentration and temperature, Geochim. Cosmochim. Acta, 2007, 71, 3357-3369. https://doi.org/10.1016/j.gca.2007.05.007.
  18. Christov, C., Isopiestic Determination of the osmotic coefficients of aqueous MgCl2-CaCl2 Mixed solution at 25oC and 50oC. Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and MgCl2-CaCl2-H2O systems to high concentration at 25oC and 50oC, J. Chem. Eng. Data, 2009a, 54, 627-635. https://doi.org/10.1021/je8005634.
  19. Christov, C., Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and HCl-MgCl2-H2O systems to high concentration from 0oC to 100oC, J. Chem. Eng. Data, 2009b, 54, 2599-2608. https://doi.org/10.1021/je900135w.
  20. Christov, C., Temperature variable chemical model of solution bromide-sulfate interaction parameters and solid-liquid equilibria in the Na-K-Ca-Br-SO4-H2O system, CALPHAD, 2012, 36, 71-81. https://doi.org/10.1016/j.calphad.2011.11.003.
  21. Christov, C., Doctor of Sciences Dissertation, Chemical and Geochemical Modeling. Theory and Practice, Episkop Konstantin Preslavski University of Shumen, 2019.
  22. Christov, C., Thermodynamic models for solid-liquid equilibrium of aluminum, and aluminum-silicate minerals in natural fluids. Current state and perspectives, Review of the Bulgarian Geological Society, 2020, 81(3), 69–71.
  23. Christov, C.; Moller, N., Chemical equilibrium model of solution behavior and solubility in the HNa-K-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature, Geochim. Cosmochim. Acta, 2004, 68, 1309-1331. https://doi.org/10.1016/j.gca.2003.08.017.
  24. Christov, C.; Zhang, M.; Talman, S.; Reardon, E.; Yang, T., Review of issues associated with evaluation of Pitzer interaction parameters (Goldschmidt 2012 Conference Abstracts), Mineralogical Magazine, 2012, 76, 1578. https://goldschmidtabstracts.info/abstracts/abstractView?id=2012001520.
  25. Clark, G. J., Am. Chem. Soc., 1919, 41, p. 1487, In: Zdanovski, 2003, p. 611.
  26. Donchev, S.; Tsenov, T.; Christov, C., Chemical and geochemical modeling. Thermodynamic models for binary fluoride systems from low to very high concentration (> 35 m) at 298.15 K, Acta Scientifica Naturalis, 2021, 8(2), 1-15. https://doi.org/10.2478/asn-2021-0014.
  27. El Guendouzi, M.; Faridi, J., Thermodynamic properties and solubility of potassium fluoride in aqueous solutions at various temperatures, J. Fluorine Chem., 2020, 235, 109558. https://doi.org/10.1016/j.jfluchem.2020.109558.
  28. El Guendouzi, M.; Faridi, J., Vapor-Liquid Equilibrium and Solid Phase in the Ternary System KF−NaF−H2O at Different Temperatures, J. Chem. Eng. Data, 2021, 66(1), 189–198. https://dx.doi.org/10.1021/acs.jced.0c00522.
  29. El Guendouzi, M.; Faridi, J.; Khamar, L., Chemical speciation of aqueous hydrogen fluoride at various temperatures from 298.15 K to 353.15 K, Fluid Phase Equilibria, 2019, 499, 112244. https://doi.org/10.1016/j.fluid.2019.112244.
  30. Elmaazouzi, H.; Messnaoui, B.; Tounsi, A.; Dinane, A.; Samaouali, A., Chemical speciation, thermodynamic properties, and salt solubility in aqueous hydrogen fluoride at various temperatures part I: Liquid chemical composition and thermodynamics properties of the HF-H2O system, Journal of Fluorine Chemistry, 2022, 253, 109918. https://doi.org/10.1016/j.jfluchem.2021.109918.
  31. Filippov, V.; Dmitriev, G.; Yakovleva, S., Dokl. Acad. Nauk AN SSSR, 1980, 252, 156.
  32. Jehu, D.; Hudleston, L., J. Chem. Soc., 1924, 125, 1453. (In: Zdanovski, 2003).
  33. Guignot, S.; Lassin, A.; Christov, C.; Lach, A.; André, L.; Henocq, P., Modelling the osmotic and activity coefficients of lanthanide nitrate aqueous solutions at 298.15 K from low molalities to (super) saturation, J. Chem. Eng. Data, 2019, 64(1), 345-359. DOI: 10.1021/acs.jced.8b00859.
  34. Hamer, W.J.; Wu, Y-C., Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25°C. J. Phys. Chem. Ref. Data, 1972, 1, 1047-1099. DOI: 10.1063/1.3253108.
  35. Harvie, C.; Moller, N.; Weare, J., The prediction of mineral solubilities in natural waters: The Na-KMg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta, 1984, 48, 723-751. DOI: 10.1016/0016-7037(84)90098-X.
  36. Kim, H.-T.; Frederick, W., Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25oC. 1. Single salt parameters. J. Chem. Eng. Data, 1988, 33, 177-184. https://doi.org/10.1021/je00052a035.
  37. Lach, A.; André, L.; Guignot, S.; Christov, C.; Henocq, P.; Lassin, A., A Pitzer parameterization to predict solution properties and salt solubility in the H-Na-K-Ca-Mg-NO3-H2O system at 298.15 K, J. Chem. Eng. Data, 2018, 63, 787−800. DOI: 10.1021/acs.jced.7b00953.
  38. Lassin, A.; Christov, C.; André, L.; Azaroual, M., A thermodynamic model of aqueous electrolyte solution behavior and solid-liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to very high concentrations (40 Molal) and from 0 to 250°C. Amer. J. Sci., 2015, 315, 204–256. DOI: 10.2475/03.2015.02.
  39. Lassin, A.; Guignot, S.; Lach, A.; Christov, C.; André, L.; Madé, B., Modeling the solution properties and mineral-solution equilibria in radionuclide-bearing aqueous nitrate systems. Application to binary and ternary systems containing U, Th or lanthanides, at 25°C, J. Chem. Eng. Data, 2020, DOI: 10.1021/acs.jced.0c00180.
  40. Mikulin, G., Voprosy Fizicheskoi Khimii Electrolytov, Izd. Khimiya, St.Petersburg, 1968.
  41. Ojkova, T.; Christov, C.; Mihov, D., Thermodynamic study of (NH4)2SeO4 (aq) and K2SeO4 (aq) at the temperature 298.15 K, Monatsh. Chemie, 1999, 130, 1061-1065. https://doi.org/10.1007/PL00010283.
  42. Park, J.-H.; Christov, C.; Ivanov, A.; Molina, M., On OH uptake by sea salt under humid conditions, Geophysical Research Letters, 2009, 36, LO2802, https://doi.org/10.1029/2008GL036160.
  43. Pitzer, K.S., Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations, J. Phys. Chem., 1973, 77(2), 268–277. https://doi.org/10.1021/j100621a026.
  44. Pitzer, K.S., Ion Interaction Approach: Theory and Data Correlation. Chapter 3 of Activity Coefficients in Electrolyte Solutions. 2nd Edition. Pitzer, K.S., ed. Boca Raton, Florida: CRC Press. TIC: 251799. 123206. 1991.
  45. Pitzer, K.S.; Mayorga, G., Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem., 1973, 77, 2300-2308. https://doi.org/10.1021/j100638a009.
  46. Pitzer, K.S.; Mayorga, G., Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes. J. Soln. Chem., 1974, 3, 539-546. https://doi.org/10.1007/BF00648138.
  47. Tananaev, I., Jurnal Pril. Khimii, 1938a, 11(2), 217-219 (in Zdanovski, 2003).
  48. Tananaev, I., Izv. AN USSR, 1938b, 14, 353-361 (in Zdanovski, 2003).
  49. Tananaev, I., Journal Obshtej Khimii, 1941, 11(4), 270 (in Zdanovski, 2003).
  50. Trendafelov, D.; Prangova, D.; Nishev, M.; Christov, C., Study of the conversion of BaSO4 into BaCO3 in the fourcomponent water-salt system BaSO4 + Na2CO3 = BaCO3 + Na2SO4, Compt. rend. Acad. Bulg. Sci., 1995a, 48, 39-41.
  51. Trendafelov, D.; Christov, C.; Balarew, C.; Karapetkova, A., Study of the Conversion of CaSO4 to CaCO3 within the CaSO4 + Na2CO3 = CaCO3 + Na2SO4 fourcomponent water-salt system, Coll. Czech. Chem. Commun., 1995b, 60, 2107-2111. https://doi.org/10.1135/cccc19952107.
  52. Zdanovskii, A.; Soloveva, E.; Liahovskaia, E.; Shestakov, N.; Shleimovich, P.; Abutkova, L.; Cheremnih, L.; Kulikova, T., Experimentalnie Dannie po rastvorimosti. vols. I-1, I-2, II-1, and II-2. Khimizdat, St. Petersburg, 2003.
DOI: https://doi.org/10.2478/asn-2023-0002 | Journal eISSN: 2603-347X | Journal ISSN: 2367-5144
Language: English
Page range: 1 - 15
Published on: Mar 29, 2023
Published by: Konstantin Preslavski University of Shumen
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Stanislav Donchev, Tsvetan V. Tsenov, Christomir Christov, published by Konstantin Preslavski University of Shumen
This work is licensed under the Creative Commons Attribution 3.0 License.