1. Arrage, A. A., Vasishtha, N., Sundberg, D., Bausch, G., Vincent, H. L., White, D.C., On-Line Monitoring of Antifouling and Fouling-Release Surfaces Using Bioluminescence and Fluorescence Measurements during Laminar-Flow, Journal of Industrial Microbiology, 1995, 15, 277-282.10.1007/BF01569980
2. Angelin, J., Kavitha, M., Exopolysaccharides from probiotic bacteria and their health potential International Journal of Biological Macromolecules 2020, 162, 853-865.10.1016/j.ijbiomac.2020.06.190730800732585269
3. Doychinova, K., Nadezhda, N., Model for contentive and technological integration applied in environmental education. Chemistry: Bulgarian Journal of Science Education, 2019, 28(6), 746-761.
4. Doychinova, K. Project-based learning in a model for content and technology integration in environmental education. Natural Sciences and Advanced Technology Education, 2020, 30(4), 380-394.10.53656/nat2021-4.04
5. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., Smith, F. Colorimetric method for determination of sugars and related substances, Anal. Chem, 1956, 28(3), 350-356.10.1021/ac60111a017
6. European Food Safety Authority EFSA, Statement by the EFSA Panel on Biological Hazards on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 12: Suitability of taxonomic units notified to EFSA until March 2020. EFSA Journal, 2020, 18 p. 6174, 10.2903/j.efsa.2020.6174.10.2903/j.efsa.2020.6174733163232760463
7. Glenn, R., Gibson, M.B., Roberfroid, Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. The Journal of Nutrition, 1995, 125(6), 1401–1412.10.1093/jn/125.6.14017782892
8. German, B., Schiffrin, E.J., Reneiro, R., Mollet, B., Pfeifer, A., Neeser, J., The development of functional foods: lessons from the gut. Trends Biotechnol, 1999, 17, 492–499.10.1016/S0167-7799(99)01380-310557163
10. Ibryamova, S., Ismailov I., Hasanov, H., Ivanov, R., Ignatova-Ivanova, Ts., Functional Characterization of an Exopolysaccharide Produced by Lactobacillus plantarum Ts Isolated from Bulgarian Wheat and Rye Flour. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2019, 10(4), 132-138.
11. Ibrjamova, S., Ivanov, R., Ignatova-Ivanova, Ts., Exopolisaccharides from L. fermentum Ts as corrosion inhibitors, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2018, 9(6), 366-374. IF 0.38.ISSN 0975-8585.
12. Ignatova-Ivanova, Ts., Doychinova, K., Nescheva, D., Ivanov, R., Investigation of the anticorrosive activity of the species Lactobacillus plantarum isolated from home-made cow’s yogurt. UNITECH’ 10, Gabrovo, 2010, 3, 489-492.
13. Ignatova-Ivanova, Ts., Ibrjmova, S., Andreeva, A., Ivanov, R., Study of biofilm formation from Lactobacillus fermentum S cultivated on different carbohydrates. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2017, 8(6), 282-289.
14. Ignatova-Ivanova, Ts., Ibryamova, S., Ivanov, R., Exopolysaccharides from Lactobacillus plantarum Ts as Corrosion Inhibitors. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2017, 9(6), 1103-1111.
15. Ignatova-Ivanova, Ts., Ibryamova, S., Ismailov, I., Hasanov, H., Ivanov, R., Structural characterization of an exopolysaccharide produced by Lactobacillus plantarum Ts isolated from Bulgarian wheat and rye flour. International Journal of ecology and development, 2020, 35(2), 1-12.
16. Idrees, M., Muhammad, I., Naima, A., Zahra, R., Abid, R., Alreshidi, M., Roberts, T., Abdelgadir, A., Khalid, M. T., Farid, A., Olawale, O. A., Ghazanfar, S., Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front. Nutr., 16 September, Sec. Nutrition and Food Science Technology. 2022. https://doi.org/10.3389/fnut. 2022.959941.
18. Kodali, V.P., Perali, R.S., Sen, R.. Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02, J. Nat. Prod., 2011, 74, 1692-1697. https://doi.org/10.1021/np1008448.10.1021/np100844821800834
19. Korcz, E., Varga, L., Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 2021, 110, 375-384.10.1016/j.tifs.2021.02.014
20. Korcz, E., Kerényi, Z., Varga, L., Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: Potential health benefits with special regard to cholesterol-lowering effects, Food & Function, 2018, 9, 3057-3068.10.1039/C8FO00118A29790546
22. Moradali, M.F., Rehm, B.H.A., The Role of Alginate in Bacterial Biofilm Formation. In: Cohen E., Merzendorfer H. (eds) Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems, 2019, vol 12. Springer.10.1007/978-3-030-12919-4_13
23. Moradi, M., Guimarães, J.T., Sahin, S., Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging, Current Opinion in Food Science, 2021, 40, 33-39.10.1016/j.cofs.2020.06.001
24. Murdzheva, D., Petkova, N.T, Todorova, M., Vasilev, I., Ivanov, I., Denev, P. Microwave-assisted synthesis of methyl esters of alginic acids as potential drug carrier. International Journal of Pharmaceutical and Clinical Research, 2016, 8(10), 1361-1368.
26. Petkova, N., Tr., Arabadzhiva, R. D., Tumbarski, Y. D., Todorova, M. M., Hambarlyiska, I. P., Ivanov, I. G., Ibryamova, S. F., Ignatova-Ivanova, Ts. V., Physicochemical Properties and Antimicrobial Activity of Acetylated Chicory Fructooligosaccharides. Philippine Journal of Science, 2021, 150(4), 633-642. b10.56899/150.03.33
27. Petkova, N., Arabadzhieva, R., Hambarliyska, I., Vassilev, D., Gencheva, G., Tumbarski, Y., Ignatova-Ivanova, Ts., Ibryamova, S., Koleva, M., Denev, P., Ultrasound-Assisted Synthesis of Antimicrobial Inulin and Sucrose Esters with 10-Undecylenic Acid. Biointerface Research in Applied ChemistryPlatinum, 2021, 11(4), 12055-12067. c10.33263/BRIAC114.1205512067
29. Ruas-Madiedo, P., Medrano, M., Salazar, N., Los Reyes-Gavilán, D., Pérez, P., Abraham, A. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxinson eukaryotic cells. Journal of Applied Microbiology, 2010, 109(6), 2079-2086.10.1111/j.1365-2672.2010.04839.x20846331
30. Sauer, K., Stoodley, P., Goeres, D.M. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol, 2022, 20, 608–620.10.1038/s41579-022-00767-035922483
31. Stadler, R., Wei, L., Furbeth, W., Grooters, M., Kuklinski, A. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgarison high alloyed steel: corrosion inhibition by extracellular polymeric substances (EPS). Mater Corros, 2010, 61(12), 1008–16.10.1002/maco.201005819
32. Wang, X., Yuan, Y., Wang, K., Zhang, D., Yang, Z., Xu, P. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. Biotechnol, 2007, 128, 403-407.10.1016/j.jbiotec.2006.09.01917069918
33. Xu, R., Shen, Q., Ding, X., Gao, W., Li, P. Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH. Eur. Food Res. Technol, 2010, 232, 231–240.10.1007/s00217-010-1382-8
34. Zhang, J., Cao, Y., Wang, J., Guo, X., Zheng, Y., Zhao, W., Mei, X., Guo, T., Yang, Z. Physicochemical characteristics and bioactivities of the exopolysaccharide and its sulphated polymer from Streptococcus thermophilus GST-6. Carbohydrate Polymers, 2016, http://dx.doi.org/10.1016/j.carbpol.03.063.
35. Zheng, J.S., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris, H.M.B., Mattarelli, P. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2782-2858.10.1099/ijsem.0.00410732293557