Have a personal or library account? Click to login
Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C Cover

Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C

Open Access
|Mar 2018

References

  1. [1]. Pitzer, K.S., Thermodynamics of electrolytes. I. Theoretical and general equations. J. Phys. Chem.,1973, 77, 268-277.10.1021/j100621a026
  2. [2]. Pitzer, K.S., Theory: ion interaction approach. In R.M. Pytkowicz, (ed.), Activity coefficients in electrolyte solutions, CRC Press, Inc., Boca Raton, Florida, 1979, 1, 157-208.
  3. [3]. Harvie, C.E., Weare, J.H., The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-CI-SO4-H2O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta, 1980, 44, 981-997.10.1016/0016-7037(80)90287-2
  4. [4]. Harvie, C.E., Moller, N., Weare, J.H., The prediction of mineral solubilities in natural waters: the Na-K-Ca-Mg-H-CI-SO4-OH-CO3-HCO3-CO2-H2O system to high ionic strength at 25°C. Geochim. Cosmochim. Acta, 1984, 48, 723-751.10.1016/0016-7037(84)90098-X
  5. [5]. Christov, C., Thermodynamic of formation of double salts and mixed crystals from aqueous solutions. J. Chem. Thermodyn., 2005, 37, 1036-1060.10.1016/j.jct.2005.01.008
  6. [6]. Greenberg, J.P., Moller, N., The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C. Geochim. Cosmochim. Acta, 1989, 53, 2503-2518.10.1016/0016-7037(89)90124-5
  7. [7]. Christov, C., Moller, N., A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature, Geochim.Cosmochim. Acta,2004, 68, 1309-1331.10.1016/j.gca.2003.08.017
  8. [8]. Christov, C., Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and HCl-MgCl2-H2O systems to high concentration from 0°C to 100°C, J. Chem. Eng. Data,2009, 54, 2599-2608.10.1021/je900135w
  9. [9]. Lassin, A., Christov, C., André, L., Azaroual, M., A thermodynamic model of aqueous electrolyte solution behavior and solid liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to a very high concentrations (40 molal) from 0° to 250°C, American Journal of Science,2015, 315, 204-256.10.2475/03.2015.02
  10. [10]. Christov, C., Dixon, A., Moller N., Thermodynamic modeling of aqueous aluminum chemistry and solid liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0° to 100°C, J. Solution Chem., 2007, 36, 1495-1523.10.1007/s10953-007-9191-9
  11. [11]. Moller, N., Christov, C., Weare, J., Thermodynamic models of aluminum silicate mineral solubility for application to enhanced geothermal systems. In Proceedings of 31th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30 –February 2006, 1, (8 pages).
  12. [12]. Moller, N., Christov, C., Weare, J., Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminum silicate minerals. In Proceedings of 32th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January, 2007, 22-24 (8 pages).
  13. [13]. André, L., Lassin, A., Azaroual, M., A methodology to estimate Pitzer’s interaction parameters. Geochim. Cosmochim. Acta, 2009, 73(13), Suppl.,1, A41.
  14. [14]. Christov, C., Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15 K., CALPHAD, 2001, 25(3), 445-454.10.1016/S0364-5916(01)00063-3
  15. [15]. Christov, C., Thermodynamics of formation of ammonium, sodium, and potassium alums and chromium alums, CALPHAD,2002, 26, 85-94.10.1016/S0364-5916(02)00026-3
  16. [16]. Christov, C., Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums, CALPHAD,2002, 26, 341-352.10.1016/S0364-5916(02)00049-4
  17. [17]. Christov, C., Thermodynamic study of the co-crystallization of ammonium, sodium and potassium alums and chromium alums, CALPHAD, 2003, 27, 153-160.10.1016/S0364-5916(03)00046-4
  18. [18]. Christov, C., Ivanova, K., Velikova, S., Tanev, S., Thermodynamic study of aqueous sodium and potassium chloride and chromate systems at the temperature 298.15 K, J. Chem. Thermodynamics, 2002, 34, 987-994.10.1006/jcht.2002.0965
  19. [19]. Christov, C., Thermodynamic study of the KCl-K2SO4-K2Cr2O7-H2O system at the temperature 298.15K, CALPHAD, 1998, 22, 449-457.10.1016/S0364-5916(99)00004-8
  20. [20]. Christov, C., Thermodynamic study of the NaCl-Na2SO4-Na2Cr2O7-H2O system at the temperature 298.15 K, CALPHAD, 2001, 25, 11-17.10.1016/S0364-5916(01)00025-6
  21. [21]. Christov, C., Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na + K + Mg +Cl + SO4 + H2O} system at T = 298.15 K., J. Chem. Thermodyn., 2004, 36, 223-235.10.1016/j.jct.2003.11.010
  22. [22]. Parkhurst, D.L., Appelo, C.A.J., User’s guide to PHREEQC (version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report, 1999, 99-4259.
  23. [23]. Plummer, L.N., Parkhurst, D.L., Fleming, G.W., Dunkle, S.A., PHRQPITZ – A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines. U.S. Geological Survey Water-Resources Investigations Report, 1988, 88-4153.
  24. [24]. Pitzer, K.S., Thermodynamics of electrolytes. 5. Effect of higher-order electrostatic terms. J. Sol. Chem., 1975, 4(3), 249-265.10.1007/BF00646562
  25. [25]. Harvie, C.E., Theoretical investigations in geochemistry and atom surface scattering. Ph.D. Thesis, University of California at San Diego, La Jolla, Calif. (unpublished), 1982.
  26. [26]. Pitzer, K.S., Mayorga, G., Thermodynamics of electrolytes. 3. Activity and osmotic coefficients for 2-2 electrolytes., J. Sol. Chem., 1974, 3(7), 539-546.10.1007/BF00648138
  27. [27]. Mikulin, G., Voprosy Fizicheskoi Khimii Electrolytov, Izd. Khimiya. 1968
  28. [28]. Palmer, D.A., Wesolowski, D.J., Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to 70°C. Geochim. Cosmochim. Acta, 1992, 56, 1093-1111.10.1016/0016-7037(92)90048-N
  29. [29]. Farelo, F., Fernandes, C., Avelino, A., Solubilities for Six Ternary Systems: NaCl+NH4Cl+H2O, KCl+NH4Cl+H2O, NaCl+LiCl+ H2O, KCl+LiCl+H2O, NaCl+AlCl3+H2O and KCl+AlCl3+H2O at T= (298 to 333) K., J. Chem. Eng. Data, 2005, 50, 1470-1477.10.1021/je050111j
  30. [30]. Sarkarov, R.A., Mironova, O.P., Solubility in the AlCl3-LiCl-NaCl-H2O System. Zh. Neorg. Khim., 1990, 35, 280-282.
  31. [31]. Kim, H.T., Frederick, W.J., Evaluation of ion interaction parameters of aqueous electrolytes at 25°C. 1. Single salt parameters. J. Chem. Eng. Data, 1988, 33, 177-184.10.1021/je00052a035
  32. [32]. Tanaka, M., Tamagawa, T., Hamada, Y., Estimation of activities in the aqueous solution systems of HCl-CuCl2 and HCl-FeCl3 using the Pitzer method. Materials Transactions, JIM, 1992, 33(4), 391-399.10.2320/matertrans1989.33.391
  33. [33]. Millero, F.J., Pierrot, D., The activity coefficients of Fe(III) hydroxide complexes in NaCl and NaClO4 solutions. Geochim. Cosmochim. Acta, 2007, 71, 4825–4833.10.1016/j.gca.2007.08.005
  34. [34]. Marion, G.M., Kargel, J.S., Catling, D.C., Modeling ferrous–ferric iron chemistry with application to martian surface geochemistry. Geochim. Cosmochim. Acta, 2008, 72, 242–266.10.1016/j.gca.2007.10.012
  35. [35]. André, L., Christov, C., Lassin, A., Azaroual, M., Thermodynamic behaviour of FeCl3-H2O and HCl-FeCl3-H2O systems – A Pitzer model at 25°C. Procedia Earth and Planetary Science, 2013, 7, 14-18.10.1016/j.proeps.2013.03.113
  36. [36]. Kangro, W., Groeneveld, A., Konzentrierte wäßrige Lösungen, I., Z Phys Chem Neue Folge (Frankfurt am Main), 1962, 32, 110-126.10.1524/zpch.1962.32.1_2.110
  37. [37]. Rumyantsev, A.V., Hagemann, S., Moog, H.C., Isopiestic investigation of the systems Fe2(SO4)3–H2SO4–H2O, FeCl3–H2O, and Fe(III)–(Na, K, Mg, Ca)Cln–H2O at 298.15 K, Z Phys Chem, 2004, 218, 1089–1127.10.1524/zpch.218.9.1089.41670
  38. [38]. Blanc, P., Lassin, A., Piantone, P., THERMODDEM a database devoted to waste minerals. BRGM (Orléans, France)., 2007, http://thermoddem.brgm.fr
  39. [39]. Hinrichsen, F.W., Sachsel, E., Z. Physik. Chem., 1904-05, 50, 81-99. Data given in Linke (1965).10.1515/zpch-1905-5005
  40. [40]. Atbir, A., Boukbir, L., El Hadek, M., Cohen-Adad, R., Etude du diagramme polythermique du système ternaire NaCl-FeCl3-H2O de 5 à 50°C. J. Therm. Anal. Calorim., 2000, 62, 203-209.10.1023/A:1010179215486
  41. [41]. Christov, C., Thermodynamic study of aqueous sodium, potassium and chromium chloride systems at the temperature 298.15 K, J. Chem. Thermodynamics,2003, 35, 909-917.10.1016/S0021-9614(03)00042-9
  42. [42]. Malquori, G., System AlCl3-KCl-HCl-H2O at 25°. Gazz. Chim. Ital., 1927, 57, 661-662; 665. Data given in Linke (1965).
  43. [43]. Mason, C., The Osmotic and Activity Coefficients of Trivalent Chlorides in Aqueous Solution at 25°. J. Amer. Chem. Soc., 1940, 63, 220-223.10.1021/ja01846a051
  44. [44]. Linke, W., Solubilities Inorganic and Metal-Organic Compounds (4th ed.), 1965, Vols 1 and 2, American Chemical Society, Washington.
DOI: https://doi.org/10.2478/asn-2018-0002 | Journal eISSN: 2603-347X | Journal ISSN: 2367-5144
Language: English
Page range: 6 - 16
Submitted on: Nov 30, 2017
Accepted on: Jan 11, 2018
Published on: Mar 7, 2018
Published by: Konstantin Preslavski University of Shumen
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Laurent André, Christomir Christov, Arnault Lassin, Mohamed Azaroual, published by Konstantin Preslavski University of Shumen
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.