References
- Thirsk R, Kuipers A, Mukai C, Williams D. The space-flight environment: the International Space Station and beyond. CMAJ. 2009 Jun 9;180(12):1216–20.
- Morphew E. Psychological and Human Factors in Long Duration Spaceflight [Internet]. Vol. 6, McGill Journal of Medicine. 2001. Available from: http://dx.doi.org/10.26443/mjm.v6i1.555
- Hodkinson PD, Anderton RA, Posselt BN, Fong KJ. An overview of space medicine. Br J Anaesth. 2017 Dec 1;119(suppl_1):i143–53.
- Stepanek J, Blue RS, Parazynski S. Space Medicine in the Era of Civilian Spaceflight. N Engl J Med. 2019 Mar 14;380(11):1053–60.
- Kanas N. Space Psychology and Psychiatry. Wertz JR, editor. Microcosm Press, Springer; 2008.
- Communication Delay [Internet]. Australian Space Academy. [cited 2021 May 4]. Available from: https://www.spaceacademy.net.au/spacelink/commdly.htm
- Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Family Med Prim Care. 2019 Jul;8(7):2328–31.
- Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017 Dec;2(4):230–43.
- Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. In: Bohr A, Memarzadeh K, editors. Artificial Intelligence in Healthcare. Academic Press; 2020. p. 25–60.
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436–44.
- Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020 Sep 11;3:118.
- Kumar A. Evaluation of the Accuracy of Astroskin as a Behavioral Health Self-Monitoring System for Spaceflight [Internet]. Annual Summer STEM Internship Symposium; 2015 Aug 22; Salinas, CA. Available from: https://ntrs.nasa.gov/api/citations/20150021842/downloads/20150021842.pdf
- Jonas Dino BD. LifeGuard: Wireless Physiological Monitor [Internet]. NASA. 2008 [cited 2021 May 5]. Available from: https://www.nasa.gov/centers/ames/research/technology-onepagers/life-guard.html
- Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol. 2018 Mar;15(3):167–80.
- D’Aunno DS, Dougherty AH, DeBlock HF, Meck JV. Effect of short- and long-duration spaceflight on QTc intervals in healthy astronauts. Am J Cardiol. 2003 Feb 15;91(4):494–7.
- Caiani EG, Martin-Yebra A, Landreani F, Bolea J, Laguna P, Vaïda P. Weightlessness and cardiac rhythm disorders: Current knowledge from space flight and bed-rest studies. Front Astron Space Sci [Internet]. 2016 Aug 23;3. Available from: http://journal.frontiersin.org/Article/10.3389/fspas.2016.00027/abstract
- Vernice NA, Meydan C, Afshinnekoo E, Mason CE. Long-term spaceflight and the cardiovascular system. Precis Clin Med. 2020 Dec;3(4):284–91.
- Smith SW, Rapin J, Li J, Fleureau Y, Fennell W, Walsh BM, et al. A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation. Int J Cardiol Heart Vasc. 2019 Dec;25:100423.
- Ribeiro AH, Ribeiro MH, Paixão GMM, Oliveira DM, Gomes PR, Canazart JA, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020 Apr 9;11(1):1760.
- Alfaras M, Soriano MC, Ortín S. A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection. Frontiers in Physics. 2019;7:103.
- Zhu H, Cheng C, Yin H, Li X, Zuo P, Ding J, et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. Lancet Digit Health. 2020 Jul;2(7):e348–57.
- Chen T-M, Huang C-H, Shih ESC, Hu Y-F, Hwang M-J. Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model. iScience. 2020 Mar 27;23(3):100886.
- Summers RL, Martin DS, Meck JV, Coleman TG. Mechanism of spaceflight-induced changes in left ventricular mass. Am J Cardiol. 2005 May 1;95(9):1128–30.
- Gallo C, Ridolfi L, Scarsoglio S. Cardiovascular deconditioning during long-term spaceflight through multiscale modeling. NPJ Microgravity. 2020 Oct 1;6:27.
- Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al. Deep learning interpretation of echocardiograms. NPJ Digit Med. 2020 Jan 24;3:10.
- Omar HA, Domingos JS, Patra A, Upton R, Leeson P, Noble JA. Quantification of cardiac bull’s-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). 2018. p. 1195–8.
- Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med [Internet]. 2018 Mar 21;1. Available from: http://dx.doi.org/10.1038/s41746-017-0013-1
- Sanchez-Martinez S, Duchateau N, Erdei T, Fraser AG, Bijnens BH, Piella G. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med Image Anal. 2017 Jan;35:70–82.
- Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol. 2016 Nov 29;68(21):2287–95.
- 30. Zerwekh JE. Nutrition and renal stone disease in space. Nutrition. 2002 Oct;18(10):857–63.
- Simon JC, Dunmire B, Bailey MR, Sorensen MD. DEVELOPING COMPLETE ULTRASONIC MANAGEMENT OF KIDNEY STONES FOR SPACEFLIGHT. J Space Saf Eng. 2016 Sep;3(2):50–7.
- Buckey JC. Space Physiology. Oxford University Press; 2006. 283 p.
- Sudharson S, Kokil P. An ensemble of deep neural networks for kidney ultrasound image classification. Comput Methods Programs Biomed. 2020 Dec;197:105709.
- Selvarani S, Rajendran P. Detection of Renal Calculi in Ultrasound Image Using Meta-Heuristic Support Vector Machine. J Med Syst. 2019 Jul 31;43(9):300.
- Black KM, Law H, Aldoukhi A, Deng J, Ghani KR. Deep learning computer vision algorithm for detecting kidney stone composition. BJU Int. 2020 Jun;125(6):920–4.
- Sjogren AR, Leo MM, Feldman J, Gwin JT. Image Segmentation and Machine Learning for Detection of Abdominal Free Fluid in Focused Assessment With Sonography for Trauma Examinations: A Pilot Study. J Ultrasound Med. 2016 Nov;35(11):2501–9.
- Kornblith AE, Addo N, Dong R, Rogers R, Grupp-Phelan J, Butte A, et al. Development and Validation of a Deep Learning Model for Automated View Classification of Pediatric Focused Assessment with Sonography for Trauma (FAST). medRxiv [Internet]. 2020; Available from: https://www.medrxiv.org/content/10.1101/2020.10.14.20206607v1.abstract
- Chiao L, Sharipov S, Sargsyan AE, Melton S, Hamilton DR, McFarlin K, et al. Ocular examination for trauma; clinical ultrasound aboard the International Space Station. J Trauma. 2005 May;58(5):885–9.
- Chen D, Yu Y, Zhou Y, Peng B, Wang Y, Hu S, et al. A Deep Learning Model for Screening Multiple Abnormal Findings in Ophthalmic Ultrasonography (With Video). Transl Vis Sci Technol. 2021 Apr 1;10(4):22–22.
- Zhu Y, Shang Y, Shao Z, Guo G. Automated Depression Diagnosis Based on Deep Networks to Encode Facial Appearance and Dynamics. IEEE Transactions on Affective Computing. 2018 Oct;9(4):578–84.
- Melinte DO, Vladareanu L. Facial Expressions Recognition for Human-Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer. Sensors [Internet]. 2020 Apr 23;20(8). Available from: http://dx.doi.org/10.3390/s20082393
- He L, Cao C. Automated depression analysis using convolutional neural networks from speech. J Biomed Inform. 2018 Jul;83:103–11.
- Chlasta K, Wołk K, Krejtz I. Automated speech-based screening of depression using deep convolutional neural networks. Procedia Comput Sci. 2019 Jan 1;164:618–28.
- Yashaswini DK, Bhat SS, Sahana YS, ShamaAdiga MS, Dhanya SG. Stress Detection using Deep Learning and IoT. International Journal of Research in Engineering, Science and Management [Internet]. 2. Available from: https://www.ijresm.com/Vol.2_2019/Vol2_Iss8_August19/IJRESM_V2_I8_14.pdf
- Fitzpatrick KK, Darcy A, Vierhile M. Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment Health. 2017 Jun 6;4(2):e19.
- Fulmer R, Joerin A, Gentile B, Lakerink L, Rauws M. Using Psychological Artificial Intelligence (Tess) to Relieve Symptoms of Depression and Anxiety: Randomized Controlled Trial. JMIR Ment Health. 2018 Dec 13;5(4):e64.
- Yin J, Chen Z, Zhou K, Yu C. A Deep Learning Based Chatbot for Campus Psychological Therapy [Internet]. arXiv [cs.AI]. 2019. Available from: http://arxiv.org/abs/1910.06707
- CIMON-2 makes its successful debut on the ISS [Internet]. Airbus. 2015 [cited 2021 May 5]. Available from: https://www.airbus.com/newsroom/press-releases/en/2020/04/cimon2-makes-its-successful-debut-on-the-iss.html
- Fröding B, Peterson M. Friendly AI. Ethics Inf Technol [Internet]. 2020 Sep 5; Available from: https://doi.org/10.1007/s10676-020-09556-w
- Pressures in a Model of Spaceflight-Associated Neuro-ocular Syndrome. JAMA Ophthalmol. 2019 Jun 1;137(6):652-659. doi: 10.1001/jamaophthalmol.2019.0459. PMID: 30998818; PMCID: PMC6567831.
- Alexander D, Gibson R, Hamilton D, et al. . Evidence Report: Risk of Spaceflight-Induced Intracranial Hypertension and Vision Alterations. Washington, DC: NASA Human Research Program; 2012.
- Lee AG. Modulation of Cerebro-ocular Hemodynamics and Pressures in a Model of SANS Using Swimming Goggles. JAMA Ophthalmol. 2019;137(6):660. doi:10.1001/ jamaophthalmol.2019.0414