References
- WHO. Diabetes [Internet]. 2021 [cited 2021 Oct 30]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
- Kautzky-Willer A, Harreiter J, Winhofer-Stöckl Y, Bancher-Todesca D, Berger A, Repa A, et al. Gestational diabetes mellitus (Update 2019). Wiener Klinische Wochenschrift. 2019;131:91–102.
- Kotzaeridi G, Blätter J, Eppel D, Rosicky I, Falcone V, Adamczyk G, et al. Recurrence of Gestational Diabetes Mellitus : To Assess Glucose Metabolism and Clinical Risk Factors at the Beginning of a Subsequent Pregnancy. Journal of Clinical Medicine. 2021;10(7494):1–10.
- Schwartz N, Nachum Z, Green MS. Risk factors of gestational diabetes mellitus recurrence: a meta-analysis. Endocrine. 2016;53(3):662–71.
- Utz B, Kolsteren P, De Brouwere V. Screening for gestational diabetes mellitus: Are guidelines from high-income settings applicable to poorer countries? Clinical Diabetes. 2015;33(3):152–8.
- McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational diabetes mellitus. Nature Reviews Disease Primers. 2019;5(1).
- Levy A, Wiznitzer A, Holcberg G, Mazor M, Sheiner E. Family history of diabetes mellitus as an independent risk factor for macrosomia and cesarean delivery. Journal of Maternal-Fetal and Neonatal Medicine. 2010;23(2):148–52.
- Mercaldo F, Nardone V, Santone A. Diabetes mellitus affected patients classification and diagnosis through machine learning techniques. Procedia Computer Science. 2017;112:2519–28.
- Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: Standards for use and reporting, with particular attention to one medical domain. Journal of Clinical Epidemiology. 2001;54(10):979–85.
- LaValley MP. Logistic regression. Circulation. 2008;117(18):2395–9.
- El Sanharawi M, Naudet F. Understanding logistic regression. Journal Francais d’Ophtalmologie. 2013;36(8):710–5.
- Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression: Third Edition. Applied Logistic Regression: Third Edition. 2013. 1–510 p.
- Saberioon M, Císař P, Labbé L, Souček P, Pelissier P, Kerneis T. Comparative performance analysis of support vector machine, random forest, logistic regression and k-nearest neighbours in rainbow trout (oncorhynchus mykiss) classification using image-based features. Sensors (Switzerland). 2018;18(4):1–15.
- Gholipour K, Asghari-Jafarabadi M, Iezadi S, Jannati A, Keshavarz S. Modelling the prevalence of diabetes mellitus risk factors based on artificial neural network and multiple regression. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit. 2018;24(8):770–7.
- Chatterjee S, Goyal D, Prakash A, Sharma J. Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application. Journal of Business Research. 2021;131(October):815–25.
- Hui EGM. Learn R for Applied Statistics. Learn R for Applied Statistics. 2019.
- Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: Literature review. Journal of Medical Internet Research. 2018;20(5):1–21.
- Vapnik VN. Pattern Recognition-Statistical Learning Theory. Canada: Wiley; 1998. 1–760 p.
- Vapnik VN. The Nature of Statistical Learning. Theory. 1995.
- Zermane H, Kasmi R. Intelligent industrial process control based on fuzzy logic and machine learning. International Journal of Fuzzy System Applications. 2020;9(1):92–111.
- Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks. 2002;13(2):415–25.
- Kale R, Shitole S. Analysis of Crop disease detection with SVM, KNN and Random forest classification. Information Technology in Industry. 2021;9(1):364–72.
- Rahab H, Zitouni A, Djoudi M. SIAAC: Sentiment Polarity Identification on Arabic Algerian Newspaper Comments. Advances in Intelligent Systems and Computing. 2018;662:139–49.
- Houfani D, Slatnia S, Kazar O, Zerhouni N, Saouli H RI. Breast cancer classification using machine learning techniques: a comparative study. Medical Technologies Journal. 2020;4(2):535–44.
- Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT. New machine learning method for image-based diagnosis of COVID-19. PLoS ONE. 2020;15(6):1–18.
- Ko BC, Kim SH, Nam JY. X-ray image classification using random forests with local wavelet-based CS-local binary patterns. Journal of Digital Imaging. 2011;24(6):1141–51.
- Dino HI, Abdulrazzaq MB. Facial Expression Classification Based on SVM, KNN and MLP Classifiers. 2019 International Conference on Advanced Science and Engineering, ICOASE 2019. 2019;70–5.
- Dietterich TG. Experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning. 2000;40(2):139–57.
- Zermane H, Drardja A. Development of an efficient cement production monitoring system based on the improved random forest algorithm. International Journal of Advanced Manufacturing Technology. 2022;120(3–4):1853–66.
- Zermane A, Mohd Tohir MZ, Zermane H, Baharudin MR, Mohamed Yusoff H. Predicting fatal fall from heights accidents using random forest classification machine learning model. Safety Science. 2023;159(November 2022):106023.
- Breiman L. Random forests. Machine Learning. 2001;45(1):5–32.
- Zhou ZH, Feng J. Deep forest. National Science Review. 2019;6(1):74–86.
- Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. International Journal of Molecular Sciences. 2018;19(11):1–21.
- Gibney MA, Arce CH, Byron KJ, Hirsch LJ. Skin and subcutaneous adipose layer thickness in adults with diabetes at sites used for insulin injections: Implications for needle length recommendations. Current Medical Research and Opinion. 2010;26(6):1519–30.
- Gou BH, Guan HM, Bi YX, Ding BJ. Gestational diabetes: Weight gain during pregnancy and its relationship to pregnancy outcomes. Chinese Medical Journal. 2019;132(2):154–60.
- Zheng W, Huang W, Liu C, Yan Q, Zhang L, Tian Z, et al. Weight gain after diagnosis of gestational diabetes mellitus and its association with adverse pregnancy outcomes: a cohort study. BMC Pregnancy and Childbirth. 2021;21(1):1–9.
- Heude B, Thiébaugeorges O, Goua V, Forhan A, Kaminski M, Foliguet B, et al. Pre-pregnancy body mass index and weight gain during pregnancy: Relations with gestational diabetes and hypertension, and birth outcomes. Maternal and Child Health Journal. 2012;16(2):355–63.
- Ben-David A, Glasser S, Schiff E, Zahav AS, Boyko V, Lerner-Geva L. Pregnancy and Birth Outcomes Among Primiparae at Very Advanced Maternal Age: At What Price? Maternal and Child Health Journal. 2016;20(4):833–42.
- Fuchs F, Monet B, Ducruet T, Chaillet N, Audibert F. Effect of maternal age on the risk of preterm birth: A large cohort study. Obstetrical and Gynecological Survey. 2018;13(1):1–10.
- Andreasen KR, Andersen ML, Schantz AL. Obesity and pregnancy. Acta Obstet Gynecol Scand. 2004;83(11):1022--1029.
- Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstetrics and gynecology. 2004;103(2):219–24.
- Peters TM, Brazeau AS. Exercise in Pregnant Women with Diabetes. Current Diabetes Reports. 2019;19(9).
- Leppänen M, Aittasalo M, Raitanen J, Kinnunen TI, Kujala UM, Luoto R. Physical activity during pregnancy: predictors of change, perceived support and barriers among women at increased risk of gestational diabetes. Maternal and child health journal. 2014;18(9):2158–66.
- Yu Y, Arah OA, Liew Z, Cnattingius S, Olsen J, Sørensen HT, et al. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: Population based cohort study with 40 years of follow-up. The BMJ. 2019;367(Cvd):1–4.
- Davenport MH, Ruchat SM, Poitras VJ, Jaramillo Garcia A, Gray CE, Barrowman N, et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: A systematic review and meta-analysis. British Journal of Sports Medicine. 2018;52(21):1367–75.
- Kalla A, Loucif L, Yahia M. Miscarriage Risk Factors for Pregnant Women: A Cohort Study in Eastern Algeria’s Population. The Journal of Obstetrics and Gynecology of India. 2022 Aug;72(Suppl 1):109-120.
- Figueroa Gray M, Hsu C, Kiel L, Dublin S. “It’s a Very Big Burden on Me”: Women’s Experiences Using Insulin for Gestational Diabetes. Maternal and Child Health Journal. 2017;21(8):1678–85.
- Liu B, Song L, Zhang L, Wang L, Wu M, Xu S, et al. Higher numbers of pregnancies associated with an increased prevalence of gestational diabetes mellitus: Results from the healthy baby cohort study. Journal of Epidemiology. 2020;30(5):208–12.
- Yan B, Yu Y, Lin M, Li Z, Wang L, Huang P, et al. High, but stable, trend in the prevalence of gestational diabetes mellitus: A population-based study in Xiamen, China. Journal of Diabetes Investigation. 2019;10(5):1358–64.
- Sibai BM, Ross MG. Hypertension in gestational diabetes mellitus: Pathophysiology and long-term consequences. Journal of Maternal-Fetal and Neonatal Medicine. 2010;23(3):229–33.