Have a personal or library account? Click to login
Evaluation of Biofilm Forming Potential and Antimicrobial Resistance Profile of S. aureus and P. aeruginosa Isolated from Peripheral Venous Catheters and Urinary Catheters In Algeria, in vitro Study  Cover

Evaluation of Biofilm Forming Potential and Antimicrobial Resistance Profile of S. aureus and P. aeruginosa Isolated from Peripheral Venous Catheters and Urinary Catheters In Algeria, in vitro Study

Open Access
|Sep 2023

References

  1. Mirzaei, R., and Ranjbar, R. (2022). Hijacking host components for bacterial biofilm formation: An advanced mechanism. International Immunopharmacology, 103, 108471.
  2. Tan, X., Qin, N., Wu, C., et al. (2015). Transcriptome analysis of the biofilm formed by methicillin-susceptible Staphylococcus aureus. Sci Rep, 5, e11997.
  3. Su, Y., Yrastorza, J.T.; Matis, M.; Cusick, J.; Zhao, S.; Wang, G.; Xie, J. (2022). Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. Adv. Sci, 9, 2203291.
  4. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 35, 322–332.
  5. Chen, M., Yu, Q., Sun, H. (2013). Novel strategies for the prevention and treatment of biofilm related infections Int. J. Mol. Sci, 14 (9), 18488-18501
  6. Yadav, M.K., Chae, S.W., Go, Y.Y., Im, G.J., Song, J.J. (2017). In vitro Multi-Species Biofilms of Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa and Their Host Interaction during In vivo Colonization of an Otitis Media Rat Model Front. Cell. Infect. Microbiol, 18.
  7. Jones, C.J. and Wozniak, D.J. (2017). Psl produced by mucoid Pseudomonas aeruginosa contributes to the establishment of biofilms and immune evasion. MBio, 8(3).
  8. Christensen, G.D., Simpson, W.A., Younger, J.J., et al. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol, 22(6), 996–1006.
  9. Freeman, J., Falkiner, F.R., Keane, C.T. (1989). New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol, 42, 872-4
  10. Christensen, G., Bisno, A., Simpsom, W., Beachey, E. (1982). Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunology, 37, 318-326.
  11. Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., Svabic Vlahovic, M. (2000). A modified microtiter-plate test for quantification staphylococcal biofilm formation. J Microbiol Methods, 40, 175–9.
  12. Nachimuthu, R., Subramani, R. Maray, S. Gothandam, K.M. Sivamangala, K. Manohar, P. and Bozdogan B. (2016). Characterizationofcarbapenem-resistant Gram-negative bacteria from Tamil Nadu. J. Chemother, 28, 371–374.
  13. WHO Regional Office for Africa, (2021). ANTIMICROBIAL RESISTANCE IN THE WHO AFRICAN REGION: a systematic literature review. Brazzaville.
  14. Brun-buisson, C. (1994). Analyse critique des méthodes diagnostiques d’infection liée au cathéter sur matériel enlevé. Réanimation Urgence, 3, 343-346.
  15. Winn, W., Allen, S., Janda, W., Koneman, E., Procop, G., Schreckenberger, P. and Woods, G. (2006). Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 6th Edition: Lippincott Williams and Wilkins.
  16. Chavant, P., Gaillard-Martinie, B., Talon, R., Hébraud, M. and Bernardi, T. (2007). A new device for rapid evaluation of biofilm formation potential by bacteria. Journal of Microbiological Methods, 68(3), 605-612.
  17. Clinical and Laboratory Standard Institute, (2015). Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational supplement. CLSI document M100-S25 (Clinical and Laboratory Standards Institute, Wayne, PA)
  18. Gunardi, W.D., Karuniawati, A., Umbas, R., Bardosono, S., Lydia, A., Soebandrio, A., Safari, D. (2021). Bio-film-producing bacteria and risk factors (gender and duration of catheterization) charac-terized as catheter-associated bio-film formation. International Journal of Microbiology, 8869275, 1–10.
  19. Walker, J.N., Flores-Mireles, A.L., Lynch, A.J.L. (2020). High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World J. Urol, 38, 2237–2245.
  20. Choudhury, M. A., Sidjabat, H. E., Zowawi, H. M., Marsh, N., Larsen, E., Runnegar, N., Rickard, C. M. (2019). Skin colonization at peripheral intravenous catheter insertion sites increases the risk of catheter colonization and infection. American Journal of Infection Control. American Journal of Infection Control, 47(12), 1484–1488
  21. Sahli, F., Feidjel, R. and Laalaoui, R. (2017). Hemodialysis catheter-related infection: rates, risk factors and pathogens. Journal of Infection and Public Health, 10 (4), 403-408
  22. Zhang, M., Xu, Y., Jiang Z, Qian J, Zhang Z, Sun N, Xie J and Li T. (2017). Study on risk factor of central venous catheter infection in ICU: 1 160 patients report. Chinese Critical Care Medicine. 29 (12).
  23. Sohail, M. and Latif, Z. (2018). Molecular analysis, biofilm formation, and susceptibility of methicillin-resistant Staphylococcus aureus strains causing community- and health care-associated infections in central venous catheters. Revista da Sociedade Brasileira de Medicina Tropical, 51(5), 603-609.
  24. Moradali, M.F., Ghods, S., Rehm, B.H.A. (2017). Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol, 7, 39.
  25. Arciola, C.R., Baldassarri, L. and Montanaro, L. (2001). Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol, 39, 2151 - 2156.
  26. Kara Terki, I., Hassaine, H., Kara Terki A., Bessouh, N., Kara Terki, N., Bellifa, S., Mhamedi, I. and lachachi, M. (2020). Effects of certain disinfectants and antibiotics on biofilm formation by Staphylococcus aureus isolated from medical devices at the University Hospital Center of Sidi Bel Abbes, Algeria. African Journal of Clinical and Experimental Microbiology, 21 (4).
  27. Knobloch, J., Horstkotte, M., Rhode, H., Mack, D. (2002). Evaluation of different detection methods for biofilm formation in Staphylococcus aureus. Med Microbiol Immunol, 19, 101-106.
  28. Mathur, T., Singhal, S., Khan, S., Upadhyay, D.J., Fatma, T., and Rattan, A. (2006). Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol, 24 (1), 25-29.
  29. Taj, Y., Essa, F., Aziz, F., Kazmi, S. (2012). Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Infect Dev Ctries, 6, 403-409.
  30. Kline, K.A. and Lewis, A.L. (2016). Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr, 4(2).
  31. Pusparajah P., Letchumanan V., Law J.W., Ab Mutalib N.S., Ong Y.S., Goh B.H., Tan L.T., Lee L.H. (2021). Streptomyces sp.-a treasure trove of weapons to combat methicillin-resistant Staphylococcus aureus biofilm associated with biomedical devices. Int. J. Mol. Sci, 22:9360.
  32. Vuong, C., Voyich, J.M., Fischer, E.R., Braughton, K.R., Whitney, A.R., DeLeo, F.R. et al. (2004). Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol, 6, 269–275.
  33. Rewatkar, A.R. and Wadher, B.J. (2013). Staphylococcus aureus and Pseudomonas aeruginosa- Biofilm formation Methods. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 8 (5), 36-40
  34. Murugan, K., Selvanayaki, K. and Al-Sohaibani, S. (2016). Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters. Saudi Journal of Biological Sciences, 23 (1), 150-159.
  35. Newman, J.W., Floyd, R.V., Fothergill, J.L. (2017). The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett, 364(15).
  36. Fatima, K., Indu, S., Meher, R. et al. (2011). Detection of Biofilm formation in Staphylococcus aureus. Does it have a role in t/t of MRSA infections? Trends in Med Res, 2, 116–123.
  37. Lade, H., Park, J.H., Chung, S.H., Kim, I.H., Kim, J.-M., Joo, H.-S., Kim, J.-S. (2019). Biofilm Formation by Staphylococcus aureus Clinical Isolates is Differentially Affected by Glucose and Sodium Chloride Supplemented Culture Media. J. Clin. Med. 8, 1853.
  38. Holá, V., Ruzicka, F. and Horka, M. (2010). Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunology & Medical Microbiology, 59 (3), 525–528.
  39. Lima, J.L.d.C., Alves, L.R., Jacomé, P.R.L.A., Neto, B., Pacífico, J., Maciel, M.A.V., et al. (2018). Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Braz J Infect Dis, 22(2), 129–36.
  40. Sabir, N., Ikram, A., Zaman, G. et al. (2017). Bacterial biofilm-based catheter-associated urinary tract infections: Causative pathogens and antibiotic resistance. American Journal of Infection Control, 45(10), 1101-1105.
  41. Abdel Halim, R.M., Kassem, N.N. and Mahmoud, B.S. (2018). Detection of Biofi lm Producing Staphylococci among Different Clinical Isolates and Its Relation to Methicillin Susceptibility. Open Access Maced J Med Sci, 6(8), 1335-1341.
  42. Neupane, S., Pant, N.D., Khatiwada, S., Chaudhary, R., Banjara, M.R. (2016). Correlation between biofilm formation and resistance toward different commonly used antibiotics along with extended spectrum beta lactamase production in Uropathogenic Escherichia coli isolated from the patients suspected of urinary tract infections visiting Shree Birendra Hospital, Chhauni, Kathmandu Nepal. Antimicrob Resist Infect Control, 5:5.
  43. Soto, S.M. (2014). Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol, 543974.
  44. Cepas, V., López, Y., Muñoz, E., et al. (2019). Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microbial Drug Resistance, 25(1), 72–79.
  45. Heidari, R., Farajzadeh Sheikh, A., Hashemzadeh, M., Farshadzadeh, Z., Salmanzadeh, S. and Saki, M. (2022). Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Molecular Biology Reports, 49, 3811–3822
  46. Jafari, F., and Elyasi, S. (2021). Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Review of Clinical Pharmacology, 14(9), 1113–1131.
  47. Gajdács, M., Baráth, Z., Kárpáti, K., Szabó, D., Usai, D., Zanetti, S. et al. (2021). No Correlation between biofilm formation, virulence factors and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics, 10, 1134
  48. El Amari, E.B., Chamot, E., Auckenthaler, R., Pechère, J., van Delden, C. (2001). Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates. Clinical Infectious Diseases, 33, 1859–1864.
  49. Kang, C.I., Kim, S.H., Park, W.B., Lee, K.D., Kim, H.B., Kim, E.C., Oh, M.D., Choe, K.W. (2005). Risk factors for antimicrobial resistance and influence of resistance on mortality in patients with bloodstream infection caused by Pseudomonas aeruginosa. Microb Drug Resist, 11, 68–74.
  50. Paterson, D.L. (2002). Looking for risk factors for the acquisition of antibiotic resistance: a 21st-century approach. Clinical Infectious Diseases, 34, 1564–1567.
Language: English
Page range: 83 - 92
Submitted on: Jun 1, 2023
Accepted on: Jul 1, 2023
Published on: Sep 13, 2023
Published by: Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania\"
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Amina Hoceini, Karima Benbaha, Hafidha Adoul, Ahlem Bensaber, Hichem Tahraoui, Hayet Chelghoum, Abdeltif Amrane, Jie Zhang, published by Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania\"
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.