Have a personal or library account? Click to login
Fish communities in Baltic Sea coastal bays; using eDNA metabarcoding to assess vertical profile and traditional method comparison Cover

Fish communities in Baltic Sea coastal bays; using eDNA metabarcoding to assess vertical profile and traditional method comparison

Open Access
|Sep 2025

References

  1. Aglen, A., Engås, A., Huse, I., Michalsen, K., Stensholt, B.K. (1999). How vertical fish distribution may affect survey results. ICES Journal of Marine Science, 56(3), 345-360; https://doi.org/10.1006/JMSC.1999.0449">https://doi.org/10.1006/JMSC.1999.0449.
  2. Alfaro-Cordova, E., Ortiz-Alvarez, C., Alfaro-Shigueto, J., Mangel, J. C., García, O., & Velez-Zuazo, X. (2022). What lies beneath? Revealing biodiversity through eDNA analysis in Lobos de Afuera Islands, Peru. Latin american journal of aquatic research, 50(4), 642-659.
  3. Altschul, S.F., Gish, W., Miller, W., Myers E. W., Lipman, D.J. (1990) Basic Local Alignment Search Tool. Journal of Molecular Biology, 215, 403-410.
  4. Andruszkiewicz, E. A., Starks, H.A., Chavez, F.P., Sassoubre, L.M., Block, B.A., Boehm, A.B. (2017). Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS ONE, 12(4), e0176343; https://doi.org/10.1371/journal.pone.0176343">https://doi.org/10.1371/journal.pone.0176343.
  5. Aneer, G. (1989). Herring (Clupea harengus L.) spawning and spawning ground characteristics in the Baltic Sea. Fisheries Research, 8(2), 169-195; https://doi.org/10.1016/0165-7836(89)90030-1">https://doi.org/10.1016/0165-7836(89)90030-1.
  6. Aspillaga, E., Bartumeus, F., Starr, R. M., López-Sanz, Ŕ., Linares, C., Diáz, D., Garrabou, J., Zabala, M., Hereu, B. (2017). Thermal stratification drives movement of a coastal apex predator. Scientific Reports 2017 7:1, 7(1), 1-10; https://doi.org/10.1038/s41598-017-00576-z">https://doi.org/10.1038/s41598-017-00576-z.
  7. Benoît, H.P., Swain, D.P. (2008). Impacts of environmental change and direct and indirect harvesting effects on the dynamics of a marine fish community. Canadian Journal of Fisheries and Aquatic Sciences, 65(10), 2088-2104; https://doi.org/10.1139/F08-112">https://doi.org/10.1139/F08-112.
  8. Bracken, F.S.A., Rooney, S.M., Kelly-Quinn, M., King, J.J., Carlsson, J. (2019). Identifying spawning sites and other critical habitat in lotic systems using eDNA “snapshots”: A case study using the sea lamprey Petromyzon marinus L. Ecology and Evolution, 9(1), 553-567; https://doi.org/10.1002/ECE3.4777">https://doi.org/10.1002/ECE3.4777.
  9. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T. L. (2009) BLAST+: architecture and applications. BMC Bioinformatics, 10, 421; https://doi.org/10.1186/1471-2105-10-421">https://doi.org/10.1186/1471-2105-10-421.
  10. Carvalho, C.O., Gromstad, W., Dunthorn, M., Karlsen, H. E., Schrřder-Nielsen, A., Ready, J.S., Haugaasen, T., Sřrnes, G., de Boer, H., Mauvisseau, Q. (2024) Harnessing eDNA metabarcoding to investigate fish community composition and its seasonal changes in the Oslo fjord. Scientific Reports, 14, 10154; https://doi.org/10.1038/s41598-024-60762-8">https://doi.org/10.1038/s41598-024-60762-8.
  11. Chouinard, P. M., Dutil, J.D. (2011). The structure of demersal fish assemblages in a cold, highly stratified environment. ICES Journal of Marine Science, 68(9), 1896-1908; https://doi.org/10.1093/icesjms/fsr125">https://doi.org/10.1093/icesjms/fsr125.
  12. Collins, R.A., Wangensteen, O.S., O’Gorman, E.J., Mariani, S., Sims, D.W., Genner, M.J. (2018). Persistence of environmental DNA in marine systems. Communications Biology, 1(1), 185; https://doi.org/10.1038/s42003-018-0192-6">https://doi.org/10.1038/s42003-018-0192-6.
  13. Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 6(8), e0023398; https://doi.org/10.1371/JOURNAL.PONE.0023398">https://doi.org/10.1371/JOURNAL.PONE.0023398.
  14. Deng, J., Zhang, X., Yao, X, Rao, J., Dai, F., Wang, H., Wang, Y., Jiang, W. (2024). eDNA metabarcoding reveals differences in fish diversity and community structure in Danjiang River. Scientific Reports 14, 29460; https://doi.org/10.1038/s41598-024-80907-z">https://doi.org/10.1038/s41598-024-80907-z.
  15. Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461; https://doi.org/10.1093/bioinformatics/btq461">https://doi.org/10.1093/bioinformatics/btq461.
  16. Eklöf, J.S., Sundblad, G., Erlandsson, M., Donadi, S., Hansen, J.P., Eriksson, B.K., Bergström, U. (2020). A spatial regime shift from predator to prey dominance in a large coastal ecosystem. Communications Biology 2020 3:1, 3(1), 1-9; https://doi.org/10.1038/s42003-020-01180-0">https://doi.org/10.1038/s42003-020-01180-0.
  17. Fiskbarometern (2024). Resursöversikt [2023]. Https://fiskbarometern.se [2024-02-15].
  18. Freitas, C., Olsen, E.M., Knutsen, H., Albretsen, J., Moland, E. (2016). Temperature-associated habitat selection in a cold-water marine fish. Journal of Animal Ecology, 85(3), 628-637; https://doi.org/10.1111/1365-2656.12458">https://doi.org/10.1111/1365-2656.12458.
  19. Gillet, B., Cottet, M., Destanque, T., Kue, K., Descloux, S., Chanudet, V., Hughes, S. (2018). Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir. PLoS ONE, 13(12), e0208592; https://doi.org/10.1371/journal.pone.0208592">https://doi.org/10.1371/journal.pone.0208592.
  20. Gold, Z., Sprague, J., Kushner, D.J., Marin, E.Z., Barber, P.H. (2021). eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS ONE, 16, e0238557; https://doi.org/10.1371/journal.pone.0238557">https://doi.org/10.1371/journal.pone.0238557.
  21. Golpour, A., Šmejkal, M., Čech, M., dos Santos, R.A., Souza, A. T., Jůza, T., Martínez, C., Bartoň, D., Vašek, M., Draštík, V., Kolařík, T., Kočvara, L., Říha, M., Peterka, J., Blabolil, P. (2022). Similarities and Differences in Fish Community Composition Accessed by Electrofishing, Gill Netting, Seining, Trawling, and Water eDNA Metabarcoding in Temperate Reservoirs. Frontiers in Ecology and Evolution, 10, 913279; https://doi.org/10.3389/fevo.2022.913279">https://doi.org/10.3389/fevo.2022.913279.
  22. Gotelli, N.J., Colwell, R.K. (2001). Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4(4), 379-391; https://doi.org/10.1046/J.1461-0248.2001.00230.X">https://doi.org/10.1046/J.1461-0248.2001.00230.X.
  23. Hänfling, B., Handley, L.L., Read, D.S., Hahn, C., Li, J., Nichols, P., Blackman, R.C., Oliver, A., Winfield, I.J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology, 25(13), 3101-3119; https://doi.org/10.1111/MEC.13660">https://doi.org/10.1111/MEC.13660.
  24. Harrison, J.B., Sunday, J.M., Rogers, S.M. (2019). Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proceedings of the Royal Society B, 286, 20191409; 10.1098/rspb.2019.1409">http://dx.doi.org/10.1098/rspb.2019.1409,
  25. He, Y., Zhao, X., Shi, C., Peng, K., Wang, Z., Jiang, Z. (2024) Fish community monitoring in floodplain lakes: eDNA metabarcoding and traditional sampling revealed inconsistent fish community composition. Ecological Indicators, 166, 112467; https://doi.org/10.1016/j.ecolind.2024.112467">https://doi.org/10.1016/j.ecolind.2024.112467.
  26. Hering, D., Borja, A., Jones J.I., Pont, D., Boets, P., Bouchez, A., Bruce, K., Drakare, S., Hänfling, B., Kahlert, M., Leese, F., Meissner, K., Mergen, P., Reyjol, Y., Segurado, P., Vogler, A., Kelly, M. (2018). Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research, 138, 192-205; https://doi.org/10.1016/J.WATRES.2018.03.003">https://doi.org/10.1016/J.WATRES.2018.03.003.
  27. Hervé, A., Domaizon, I., Baudoin, J.M., Dejean, T., Gibert, P., Jean, P., Peroux, T., Raymond, J.C., Valentini, A., Vautier, M., Logez, M. (2022). Spatio-temporal variability of eDNA signal and its implication for fish monitoring in lakes. PLoS ONE, 17(8), e0272660; https://doi.org/10.1371/journal.pone.0272660">https://doi.org/10.1371/journal.pone.0272660.
  28. ICES. (2023). Baltic Fisheries Assessment Working Group (WGBFAS); https://doi.org/10.17895/ices.pub.23123768">https://doi.org/10.17895/ices.pub.23123768.
  29. Irisson, J.-O., Paris, C. B., Guigand, C., Planes, S. (2010). Vertical distribution and ontogenetic “migration” in coral reef fish larvae. Limnology and Oceanography, 55(2), 909-919; https://doi.org/10.4319/LO.2010.55.2.0909">https://doi.org/10.4319/LO.2010.55.2.0909.
  30. Jackson, D.A., Peres-Neto, P.R., Olden, J.D. (2001). What controls who is where in freshwater fish communities -The roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 157-170; https://doi.org/10.1139/CJFAS-58-1-157">https://doi.org/10.1139/CJFAS-58-1-157.
  31. Jerde, C.L., Mahon, A.R., Chadderton, W.L., Lodge, D.M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4(2), 150-157; https://doi.org/10.1111/J.1755-263X.2010.00158.X">https://doi.org/10.1111/J.1755-263X.2010.00158.X.
  32. Kasmi, Y., Blancke, T., Eschbach, E., Möckel, B., Casas, L., Bernreuther, M., Nogueira, P., Delfs, G., Kadhim, S., Meißner, T., Rödiger, M., Eladdadi, A., Stransky, C., Hanel, R. (2023). Atlantic cod (Gadus morhua) assessment approaches in the North and Baltic Sea: A comparison of environmental DNA analysis versus bottom trawl sampling. Frontiers in Marine Science, 10, 1058354; https://doi.org/10.3389/fmars.2023.1058354">https://doi.org/10.3389/fmars.2023.1058354.
  33. Keck, F., Blackman, R.C., Bossart, R., Brantschen, J., Couton, M., Hürlemann, S., Kirschner, D., Locher, N., Zhang, H., Altermatt, F. (2022). Meta-analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment. Molecular Ecology, 31(6), 1820-1835; https://doi.org/10.1111/MEC.16364">https://doi.org/10.1111/MEC.16364.
  34. Kirtane, A., Wieczorek, D., Noji, T., Baskin, L., Ober, C., Plosica, R., Chenoweth, A., Lynch, K., Sassoubre, L. (2021). Quantification of Environmental DNA (eDNA) shedding and decay rates for three commercially harvested fish species and comparison between eDNA detection and trawl catches. Environmental DNA, 3(6), 1142-1155; https://doi.org/10.1002/EDN3.236">https://doi.org/10.1002/EDN3.236.
  35. Klobucar, S.L., Rodgers, T.W., Budy, P. (2017). At the forefront: Evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations. Canadian Journal of Fisheries and Aquatic Sciences, 74(12), 2030-2034; https://doi.org/10.1139/cjfas-2017-0114">https://doi.org/10.1139/cjfas-2017-0114.
  36. Knudsen, S.W., Ebert, R.B., Hesselsře, M., Kuntke, F., Hassingboe, J., Mortensen, P.B., Thomsen, P.F., Sigsgaard, E.E., Hansen, B.K., Nielsen, E.E., Möller, P.R. (2019). Species-specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 510, 31-45; https://doi.org/10.1016/j.jembe.2018.09.004">https://doi.org/10.1016/j.jembe.2018.09.004.
  37. Lacoursière-Roussel, A., Rosabal, M., Bernatchez, L. (2016). Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Molecular Ecology Resources, 16(6), 1401-1414; https://doi.org/10.1111/1755-0998.12522">https://doi.org/10.1111/1755-0998.12522.
  38. Littlefair, J.E., Hrenchuk, L.E., Blanchfield, P.J., Rennie, M.D., Cristescu, M.E. (2021). Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes. Molecular ecology, 30(13), 3083-3096.; https://doi.org/10.1111/MEC.15623">https://doi.org/10.1111/MEC.15623.
  39. Li, Z., Jiang, P., Wang, L., Liu, L., Li, M., & Zou, K. (2023). A comparison of seasonal composition and structure of fish community between environmental DNA technology and gillnetting in the Pearl River Estuary, China. Ecological Indicators, 147, 109915.; https://doi.org/10.1016/j.ecolind.2023.109915">https://doi.org/10.1016/j.ecolind.2023.109915.
  40. Ljunggren, L., Sandström, A., Bergström, U., Mattila, J., Lappalainen, A., Johansson, G., Sundblad, G., Casini, M., Kaljuste, O., Eriksson, B. K. (2010). Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science, 67(8), 1587-1595; https://doi.org/10.1093/ICES-JMS/FSQ109">https://doi.org/10.1093/ICES-JMS/FSQ109.
  41. Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17, 10.
  42. Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M., Minamoto, T. (2014). The release rate of environmental DNA from juvenile and adult fish. PLoS ONE, 9(12), e114639; https://doi.org/10.1371/journal.pone.0114639">https://doi.org/10.1371/journal.pone.0114639.
  43. Miya, M., Sado, T., Oka, S. I., Fukuchi, T. (2022). The use of citizen science in fish eDNA metabarcoding for evaluating regional biodiversity in a coastal marine region: A pilot study. Metabarcoding and Metagenomics 6: e80444; https://doi.org/10.3897/MBMG.6.80444">https://doi.org/10.3897/MBMG.6.80444.
  44. Näslund, J., Didrikas, T., Hellström, M. (2019). Inventering av fisk vid Gåsefjärden i Karlskrona skärgård med nätprovfiske och eDNA. AquaBiota Rapport 2019, 15.
  45. Nilsson, H., Appelberg, M., Axenrot, T., Vinterstare, J. (2022) Dödliga, invasiva och icke-invasiva provtagningsmetoder av akvatiska resurser: möjligheter att anpassa SLU Aquas metodik. Aqua Reports, 2022:12. Sveriges lantbruksuniversitet (SLU), Institutionen för akvatiska resurser.
  46. Ogonowski, M., Karlsson, E., Vasemägi, A., Sundin, J., Bohman, P., Sundblad, G. (2023). Temperature moderates eDNA-biomass relationships in northern pike. Environmental DNA, 5(4), 750-765;https://doi.org/10.1002/EDN3.440.
  47. Oksanen, J., Simpson G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., … Weedon, J. (2022). Community Ecology Package [R package vegan version 2.6-4]. Comprehensive R Archive Network (CRAN). https://CRAN.R-project.org/package=vegan
  48. Olsson, J., Bergström, L., Lappalainen, A., Heikinheimo, O., Ådjers, K., Saks, L., Svirgsden, R., Kruze, E., Lo ys, L., Lejk, A., Smolinski, S., Winkler, H., Schulz, N., Stottrup, J.G. (2015). Guidelines for COASTAL FISH monitoring sampling methods of HELCOM.
  49. Olsson, J., Jakubavičiūte, E., Kaljuste, O., Larsson, N., Bergström, U., Casini, M., Cardinale, M., Hjelm, J., Byström, P., Anderson, E. (2019). The first large-scale assessment of three-spined stickleback (Gasterosteus aculeatus) biomass and spatial distribution in the Baltic Sea. ICES Journal of Marine Science, 76(6), 1653-1665; https://doi.org/10.1093/ICESJMS/FSZ078">https://doi.org/10.1093/ICESJMS/FSZ078.
  50. Pecuchet, L., Törnroos, A., Lindegren, M. (2016). Patterns and drivers of fish community assembly in a large marine ecosystem. Marine Ecology Progress Series, 546, 239-248; https://doi.org/10.3354/MEPS11613">https://doi.org/10.3354/MEPS11613.
  51. Polte, P., Kotterba, P., Moll, D., Von Nordheim, L. (2017). Ontogenetic loops in habitat use highlight the importance of littoral habitats for early life-stages of oceanic fishes in temperate waters. Scientific Reports, 7, 42709; https://doi.org/10.1038/srep42709">https://doi.org/10.1038/srep42709.
  52. Pont, D., Meulenbroek, P., Bammer, V., Dejean, T., Erős, T., Jean, P., Lenhardt, M., Nagel, C., Pekarik, L., Schabuss, M., Stoeckle, B.C., Stoica, E., Zornig, H., Weigand, A., Valentini, A. (2023). Quantitative monitoring of diverse fish communities on a large scale combining eDNA metabarcoding and qPCR. Molecular Ecology Resources, 23(2), 396-409; https://doi.org/10.1111/1755-0998.13715">https://doi.org/10.1111/1755-0998.13715.
  53. Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., Roset, N., Schabuss, M., Zornig, H., Dejean, T. (2018). Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Scientific reports 8, 10361; https://doi.org/10.1038/s41598-018-28424-8">https://doi.org/10.1038/s41598-018-28424-8.
  54. Rourke, M.L., Fowler, A.M., Hughes, J.M., Broadhurst, M.K., DiBattista, J.D., Fielder, S., Wilkes Walburn, J., Furlan, E.M. (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys. Environmental DNA, 4(1), 9-33; https://doi.org/10.10-02/EDN3.185.
  55. Sassoubre, L.M., Yamahara, K.M., Gardner, L.D., Block, B.A., Boehm, A.B. (2016). Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Environmental Science and Technology, 50(19), 10456-10464; https://doi.org/10.1021/acs.est.6b03114">https://doi.org/10.1021/acs.est.6b03114.
  56. Schreiber, L., Castellanos-Galindo, G.A., Robertson, D.R., Torchin, M., Chavarria, K., Laakmann, S., Saltonstall, K. (2023). Environmental DNA (eDNA) reveals potential for interoceanic fish invasions across the Panama Canal. Ecology and Evolution, 13(1), e9675; https://doi.org/10.10-02/ece3.9675.
  57. Sieben, K., Ljunggren, L., Bergström, U., Eriksson, B.K. (2011). A meso-predator release of stickleback promotes recruitment of macroalgae in the Baltic Sea. Journal of Experimental Marine Biology and Ecology, 397(2), 79-84; https://doi.org/10.1016/J.JEMBE.2010.11.020">https://doi.org/10.1016/J.JEMBE.2010.11.020.
  58. Sigsgaard, E.E., Carl. H., Möller, P.R., Thomsen, P.F. (2015). Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biological Conservation, 183, 46-52; https://doi.org/10.1016/J.BIOCON.2014.11.023">https://doi.org/10.1016/J.BIOCON.2014.11.023.
  59. Sigsgaard, E.E., Nielsen. I.B., Carl, H., Krag. M.A., Knudsen, S.W., Xing, Y., Holm-Hansen. T.H., Möller, P.R., Thomsen, P.F. (2017). Seawater environmental DNA reflects seasonality of a coastal fish community. Marine Biology, 164(6), 128; https://doi.org/10.1007/s00227-017-3147-4">https://doi.org/10.1007/s00227-017-3147-4.
  60. Snoeijs-Leijonmalm, P., Andrén, E. (2017). Why is the Baltic Sea so special to live in? In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht; https://doi.org/10.1007/978-94-007-0668-2_2">https://doi.org/10.1007/978-94-007-0668-2_2.
  61. Spens, J., Evans, A.R., Halfmaerten, D., Knudsen, S.W., Sengupta, M.E., Mak, S.S.T., Sigsgaard, E.E., Hellström, M. (2017) Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods in Ecology and Evolution, 8, 635-645; https://doi.org/10.11-11/2041-210X.12683
  62. Staveley, T.A.B., Hellström, M., Birgersson, V., Hernvall, P., Schibli, H., Axelsson, E., Larliander, L., Molander, L., Thorstad, E.B., Berntsen H.H., Ahlbeck Bergendahl, I. (2025) Detection of non-native pink salmon (Oncorhynchus gorbuscha) in Swedish rivers using eDNA. Environmental DNA, 7(3); https://doi.org/10.1002/edn3.70117">https://doi.org/10.1002/edn3.70117
  63. Staveley, T.A.B., Hernvall, P., Stjärnkvist, N., van der Meijs, F., Wikström, S.A., Gullström, M. (2020). Exploring sea-grass fish assemblages in relation to the habitat patch mosaic in the brackish Baltic Sea. Marine Biodiversity, 50(1), 1-7; https://doi.org/10.1007/s12526-019-01-025-y">https://doi.org/10.1007/s12526-019-01-025-y.
  64. Staveley, T.A.B., Jacoby, D.M.P., Perry, D., van der Meijs, F., Lagenfelt, I., Cremle, M., Gullström, M. (2019). Sea surface temperature dictates movement and habitat connectivity of Atlantic cod in a coastal fjord system. Ecology and Evolution, 9(16), 9076-9086; https://doi.org/10.1002/ECE3.5453">https://doi.org/10.1002/ECE3.5453.
  65. Stefanoudis, P.V., Gress, E., Pitt, J.M., Smith, S.R., Kincaid, T., Rivers M., Andradi-Brown, D.A., Rowlands, G., Woodall, L. C., Rogers, A.D. (2019). Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Frontiers in Marine Science, 6:307; https://doi.org/10.3389/fmars.2019.00307">https://doi.org/10.3389/fmars.2019.00307.
  66. Stoeckle, M.Y., Adolf, J., Charlop-Powers, Z., Dunton, K.J., Hinks, G., Vanmorter, S.M. (2021). Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES Journal of Marine Science, 78(1), 293-304; https://doi.org/1-0.1093/icesjms/fsaa225.
  67. Svedäng, H., Almqvist, G., Axenrot, T. (2023). A Baltic pelagic fish community revisited: Indications of profound changes in species composition in the Stockholm Archipelago. Fisheries Research, 266, 106780; https://doi.org/10.1016/J.FISHRES.2023.106780">https://doi.org/10.1016/J.FISHRES.2023.106780.
  68. Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4), e35868; https://doi.org/10.1371/journal.pone.0035868">https://doi.org/10.1371/journal.pone.0035868.
  69. R Core Team. (2022). R: A language and environment for statistical computing (Version 4.2.2). The R Foundation for Statistical Computing. https://www.R-project.org/
  70. Thomsen, P.F., Kielgast, J., Iversen, L.L., Möller, P.R., Rasmussen, M., Willerslev, E. (2012). Detection of a Diverse Marine Fish Fauna Using Environmental DNA from Sea-water Samples. PLoS ONE, 7(8), e41732; https://doi.org/10.1371/journal.pone.0041732">https://doi.org/10.1371/journal.pone.0041732.
  71. Thomsen, P.F., Kielgast, J., Iversen, L.L., Wiuf, C., Rasmussen, M., Gilbert, M.T.P., Orlando, L., Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21(11), 2565-2573; https://doi.org/10.1111/J.1365-294X.2011.05418.X">https://doi.org/10.1111/J.1365-294X.2011.05418.X.
  72. Urban, P., Jacobsen, M.W., Bekkevold, D., Nielsen, A., Storr-Paulsen, M., Nijland, R., Nielsen, E.E. (2024). eDNA based bycatch assessment in pelagic fish catches. Scientific Reports, 14, 2976; https://doi.org/10.1038/s41598-024-52543-0">https://doi.org/10.1038/s41598-024-52543-0.
  73. Valdez-Moreno, M., Ivanova, N.V., Elías-Gutiérrez, M., Pedersen, S.L., Bessonov, K., Hebert, P.D.N. (2019). Using eDNA to biomonitor the fish community in a tropical oligotrophic lake. PLoS ONE, 14(4), e215505; https://doi.org/10.1371/journal.pone.0215505">https://doi.org/10.1371/journal.pone.0215505.
  74. Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Scientific Reports, 7, 40368; https://doi.org/10.1038/srep40368">https://doi.org/10.1038/srep40368.
DOI: https://doi.org/10.2478/aopf-2025-0007 | Journal eISSN: 2545-059X | Journal ISSN: 2545-0255
Language: English
Page range: 72 - 90
Submitted on: Aug 2, 2024
Accepted on: Jun 24, 2025
Published on: Sep 22, 2025
Published by: Stanisław Sakowicz Inland Fisheries Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Neele Schmidt, Thomas A. B. Staveley, published by Stanisław Sakowicz Inland Fisheries Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.