Have a personal or library account? Click to login
Role of β-glucans in reducing oxidative stress and improving muscle tissue health in European whitefish (Coregonus lavaretus L.) Cover

Role of β-glucans in reducing oxidative stress and improving muscle tissue health in European whitefish (Coregonus lavaretus L.)

Open Access
|May 2025

References

  1. Ali, M. F., Driscoll, C. B., Walters, P. R., Limper, A. H., Carmona, E. M. (2015). β-glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. Journal of Immunology, 195(11), 5318-5326.
  2. Anand, A., Srivastava, P. K. (2012). A molecular description of acid phosphatase. Applied Biochemistry and Biotechnology, 167(8), 2174-2197.
  3. Barrett, A. J., Heath, M. F. (1977). Lysosomal enzymes. In: Lysosomes, a Laboratory Handbook (Ed.) J.T. Dingle, North Holland: Amsterdam: 19-146.
  4. Bonam, S. R., Wang, F., Muller, S. (2019). Lysosomes as a therapeutic target. Nature Reviews Drug Discovery, 18(12), 923-948.
  5. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
  6. Braian, C., Karlsson, L., Das, J., Lerm, M. (2023). Selected β-glucans act as immune-training agents by improving anti-mycobacterial activity in human macrophages: A pilot study. Journal of Innate Immunity, 15(1), 751-764.
  7. Brogi, L., Marchese, M., Cellerino, A., Licitra, R., Naef, V., Mero, S., Bibbiani, C., Fronte, B. (2021). β-glucans as dietary supplement to improve locomotion and mitochondrial respiration in a model of Duchenne muscular dystrophy. Nutrients, 13(5), 1619.
  8. Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S., Gordon, S. (2003). Dectin-1 mediates the biological effects of beta-glucans. The Journal of Experimental Medicine, 197(9), 1119-1124.
  9. Buege, J. A., Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310.
  10. Byrne, K. A., Loving, C. L., McGill, J. L. (2020). Innate immunomodulation in food animals: Evidence for trained immunity? Frontiers in Immunology, 11, 1099.
  11. Cárdenas-Reyna, T., Angulo, C., Guluarte, C., Hori-Oshima, S., Reyes-Becerril, M. (2017). In vitro immunostimulatory potential of fungal β-glucans in pacific red snapper (Lutjanus peru) cells. Developmental and Comparative Immunology, 77, 350-358.
  12. Chatham, J. C., Zhang, J., Wende, A. R. (2021). Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology. Physiological Reviews, 101(2), 427-493.
  13. Dalmo, R. A., Brgwald, J. (2008). Beta-glucans as conductors of immune symphonies. Fish & Shellfish Immunology, 25(4), 384-396.
  14. Dawood, M. A. O., Eweedah, N. M., Moustafa, E. M., Shahin, M. G. (2020). Synbiotic effects of Aspergillus oryzae and β-glucan on growth and oxidative and immune responses of nile Tilapia, Oreochromis niloticus. Probiotics and Antimicrobial Proteins, 12(1), 172-183.
  15. DeMartino, G. N., Goldberg, A. L. (1978). Thyroid hormones control lysosomal enzyme activities in liver and skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 75(3), 1369-1373.
  16. Dietrich-Muszalska, A., Olas, B., Kontek, B., Rabe-Jabłońska, J. (2011). Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol. International Journal of Biological Macromolecules, 49(1), 113-116.
  17. Douxfils, J., Fierro-Castro, C., Mandiki, S. N., Emile, W., Tort, L., Kestemont, P. (2017). Dietary β-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 63, 285-296.
  18. Engstad, R. E., Robertsen, B., Frivold, E. (1992). Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish & Shellfish Immunology, 2, 287-297.
  19. Hadiuzzaman, M., Moniruzzaman, M., Shahjahan, M., Bai, S. C., Min, T., Hossain, Z. (2022). β-glucan: Mode of action and its uses in fish immunomodulation. Frontiers in Marine Science, 9, 905986.
  20. Jedinak, A., Dudhgaonkar, S., Wu, Q. L., Simon, J., Sliva, D. (2011). Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling. Nutrition Journal, 10, 52.
  21. Jørgensen, J. B., Lunde, H., Jensen, L., Whitehead, A. S., Robertsen, B. (2000). Serum amyloid A transcription in Atlantic salmon (Salmo salar L.) hepatocytes is enhanced by stimulation with macrophage factors, recombinant human IL-1 beta, IL-6 and TNF alpha or bacterial lipopolysaccharide. Developmental and Comparative Immunology, 24(6-7), 553-563.
  22. Jung-Schroers, V., Adamek, M., Harris, S., Syakuri, H., Jung, A., Irnazarow, I., Steinhagen, D. (2018). Response of the intestinal mucosal barrier of carp (Cyprinus carpio)to a bacterial challenge by Aeromonas hydrophila intubation after feeding with β-1,3/1,6-glucan. Journal of Fish Diseases, 41(7), 1077-1092.
  23. Kim, H. S., Hong, J. T., Kim, Y., Han, S. B. (2011). Stimulatory effect of β-glucans on immune cells. Immune Network, 11(4), 191-195.
  24. Kumari, J., Sahoo, P. K. (2006). Dietary immunostimulants influence specific immune response and resistance of healthy and immunocompromised Asian catfish Clarias batrachus to Aeromonas hydrophila infection. Diseases of Aquatic Organisms, 70(1-2), 63-70.
  25. Kurhaluk, N., Grudniewska, J., Tkaczenko, H. (2024). Modulation of oxidative stress biomarkers and lysosomal functioning in gills and liver of rainbow trout (Oncorhynchus mykiss Walbaum) fed a diet supplemented with yeast β-glucans. Fisheries & Aquatic Life, 32, 44-62.
  26. Leal, E., Ordás, M. C., Soleto, I., Zarza, C., McGurk, C., Tafalla, C. (2019). Functional nutrition modulates the early immune response against viral haemorrhagic septicaemia virus (VHSV) in rainbow trout. Fish & Shellfish Immunology, 94, 769-779.
  27. Li, H., Liu, H., Bi, L., Liu, Y., Jin, L., Peng, R. (2024). Immunotoxicity of microplastics in fish. Fish & Shellfish Immunology, 150, 109619.
  28. Liu, Y., Wu, Q., Wu, X., Algharib, S. A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y., Wang, Y. (2021). Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. International Journal of Biological Macromolecules, 173, 445-456.
  29. Machuca, C., Méndez-Martínez, Y., Reyes-Becerril, M., Angulo, C. (2022). Yeast β-glucans as fish immunomodulators: a review. Animals, 12(16), 2154.
  30. McDonald, J. K., Barrett, A. J. (1986). Exopeptidases. In: Mammalian Proteases: A glossary and Bibliography. Academic Press, London: 114-144.
  31. Meena, D. K., Das, P., Kumar, S., Mandal, S. C., Prusty, A. K., Singh, S. K., Akhtar, M. S., Behera, B. K., Kumar, K., Pal, A. K., Mukherjee, S. C. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiology and Biochemistry, 39(3), 431-457.
  32. Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the anti-oxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4), 407-412.
  33. Murphy, E. J., Rezoagli, E., Major, I., Rowan, N. J., Laffey, J. G. (2020). β-glucan metabolic and immunomodulatory properties and potential for clinical application. Journal of Fungi (Basel, Switzerland), 6(4), 356.
  34. Petit, J., Bailey, E. C., Wheeler, R. T., de Oliveira, C. A. F., Forlenza, M., Wiegertjes, G. F. (2019). Studies into β-glucan recognition in fish suggests a key role for the C-type lectin pathway. Frontiers in Immunology, 10, 280.
  35. Porter, D., Peggs, D., McGurk, C., Martin, S. A. M. (2022). Immune responses to prebiotics in farmed salmonid fish: How transcriptomic approaches help interpret responses. Fish & Shellfish Immunology, 127, 35-47.
  36. Reznick, A. Z., Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods in Enzymology, 233, 357-363.
  37. Rodrigues, M. V., Zanuzzo, F. S., Koch, J. F. A., de Oliveira, C. A. F., Sima, P., Vetvicka, V. (2020). Development of fish immunity and the role of β-glucan in immune responses. Molecules (Basel, Switzerland), 25(22), 5378.
  38. Siwicki, A. K., Anderson, D. P. (1993). Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In: Fish Disease Diagnosis and Prevention Methods (Ed.) A.K. Siwicki, D.P. Anderson, J. Waluga, Wydawnictwo IRS, Olsztyn: 105-112.
  39. Smeekens, S. P., Gresnigt, M. S., Becker, K. L., Cheng, S. C., Netea, S. A., Jacobs, L., Jansen, T., van de Veerdonk, F. L., Williams, D. L., Joosten, L. A., Dinarello, C. A., Netea, M. G. (2015). An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism. Cytokine, 71(2), 215-222.
  40. Song, L., Zhou, Y., Ni, S., Wang, X., Yuan, J., Zhang, Y., Zhang, S. (2020). Dietary intake of β-glucans can prolong lifespan and exert an antioxidant action on aged fish Nothobranchius guentheri. Rejuvenation Research, 23(4), 293-301.
  41. Stier, H., Ebbeskotte, V., Gruenwald, J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition Journal, 13, 38.
  42. Tkachenko, H., Grudniewska, J., Kurhaluk, N. (2022). Effects of dietary yeast α-1.3/1.6-glucans on oxidative stress biomarkers in hearts and livers of rainbow trout (Oncorhynchus mykiss Walbaum), European whitefish (Coregonus lavaretus L.), and grayling (Thymallus thymallus L.). Fisheries & Aquatic Life, 30, 149-168.
  43. Trivedi, P. C., Bartlett, J. J., Pulinilkunnil, T. (2020). Lysosomal biology and function: Modern view of cellular debris bin. Cells, 9(5), 1131.
  44. Velazquez-Carriles, C., Macias-Rodríguez, M. E., Carbajal-Arizaga, G. G., Silva-Jara, J., Angulo, C., Reyes-Becerril, M. (2018). Immobilizing yeast β-glucan on zinc-layered hydroxide nanoparticle improves innate immune response in fish leukocytes. Fish & Shellfish Immunology, 82, 504-513.
  45. Vetvicka, V., Vannucci, L., Sima, P. (2013). The effects of β-glucan on fish immunity. North American Journal of Medical Sciences, 5(10), 580-588.
  46. Waikhom, D., Kezhedath, J., Nediyirippil Suresh, S., Bedekar, M. K., Varghese, T., Prasad Kurcheti, P., Kooloth Valappil, R. (2024). Induction of trained immunity using β-glucan and its protective responses in Nile tilapia, Oreochromis niloticus. Developmental and Comparative Immunology, 157, 105188.
  47. Xu, X., Yasuda, M., Nakamura-Tsuruta, S., Mizuno, M., Ashida, H. (2012). β-glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-á production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages. The Journal of Biological Chemistry, 287(2), 871-878.
  48. Zeng, L., Wang, Y. H., Ai, C. X., Zhang, J. S. (2018). Differential effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker Larimichthys crocea under acute copper stress. Ecotoxicology and Environmental Safety, 165, 78-87.
  49. Zhang, Y., Liu, X., Zhao, J., Wang, J., Song, Q., Zhao, C. (2022). The phagocytic receptors of β-glucan. International Journal of Biological Macromolecules, 205, 430-41.
  50. Zhong, X., Wang, G., Li, F., Fang, S., Zhou, S., Ishiwata, A., Tonevitsky, A. G., Shkurnikov, M., Cai, H., Ding, F. (2023). Immunomodulatory effect and biological significance of β-glucans. Pharmaceutics, 15(6), 1615.
DOI: https://doi.org/10.2478/aopf-2025-0003 | Journal eISSN: 2545-059X | Journal ISSN: 2545-0255
Language: English
Page range: 30 - 45
Submitted on: Nov 3, 2024
Accepted on: Jan 13, 2025
Published on: May 23, 2025
Published by: Stanisław Sakowicz Inland Fisheries Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Halina Tkaczenko, Joanna Grudniewska, Natalia Kurhaluk, published by Stanisław Sakowicz Inland Fisheries Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.