References
- Ali, M. F., Driscoll, C. B., Walters, P. R., Limper, A. H., Carmona, E. M. (2015). β-glucan-activated human B lymphocytes participate in innate immune responses by releasing proinflammatory cytokines and stimulating neutrophil chemotaxis. Journal of Immunology, 195(11), 5318-5326.
- Anand, A., Srivastava, P. K. (2012). A molecular description of acid phosphatase. Applied Biochemistry and Biotechnology, 167(8), 2174-2197.
- Barrett, A. J., Heath, M. F. (1977). Lysosomal enzymes. In: Lysosomes, a Laboratory Handbook (Ed.) J.T. Dingle, North Holland: Amsterdam: 19-146.
- Bonam, S. R., Wang, F., Muller, S. (2019). Lysosomes as a therapeutic target. Nature Reviews Drug Discovery, 18(12), 923-948.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
- Braian, C., Karlsson, L., Das, J., Lerm, M. (2023). Selected β-glucans act as immune-training agents by improving anti-mycobacterial activity in human macrophages: A pilot study. Journal of Innate Immunity, 15(1), 751-764.
- Brogi, L., Marchese, M., Cellerino, A., Licitra, R., Naef, V., Mero, S., Bibbiani, C., Fronte, B. (2021). β-glucans as dietary supplement to improve locomotion and mitochondrial respiration in a model of Duchenne muscular dystrophy. Nutrients, 13(5), 1619.
- Brown, G. D., Herre, J., Williams, D. L., Willment, J. A., Marshall, A. S., Gordon, S. (2003). Dectin-1 mediates the biological effects of beta-glucans. The Journal of Experimental Medicine, 197(9), 1119-1124.
- Buege, J. A., Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310.
- Byrne, K. A., Loving, C. L., McGill, J. L. (2020). Innate immunomodulation in food animals: Evidence for trained immunity? Frontiers in Immunology, 11, 1099.
- Cárdenas-Reyna, T., Angulo, C., Guluarte, C., Hori-Oshima, S., Reyes-Becerril, M. (2017). In vitro immunostimulatory potential of fungal β-glucans in pacific red snapper (Lutjanus peru) cells. Developmental and Comparative Immunology, 77, 350-358.
- Chatham, J. C., Zhang, J., Wende, A. R. (2021). Role of O-linked N-acetylglucosamine protein modification in cellular (patho)physiology. Physiological Reviews, 101(2), 427-493.
- Dalmo, R. A., Brgwald, J. (2008). Beta-glucans as conductors of immune symphonies. Fish & Shellfish Immunology, 25(4), 384-396.
- Dawood, M. A. O., Eweedah, N. M., Moustafa, E. M., Shahin, M. G. (2020). Synbiotic effects of Aspergillus oryzae and β-glucan on growth and oxidative and immune responses of nile Tilapia, Oreochromis niloticus. Probiotics and Antimicrobial Proteins, 12(1), 172-183.
- DeMartino, G. N., Goldberg, A. L. (1978). Thyroid hormones control lysosomal enzyme activities in liver and skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 75(3), 1369-1373.
- Dietrich-Muszalska, A., Olas, B., Kontek, B., Rabe-Jabłońska, J. (2011). Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol. International Journal of Biological Macromolecules, 49(1), 113-116.
- Douxfils, J., Fierro-Castro, C., Mandiki, S. N., Emile, W., Tort, L., Kestemont, P. (2017). Dietary β-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 63, 285-296.
- Engstad, R. E., Robertsen, B., Frivold, E. (1992). Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish & Shellfish Immunology, 2, 287-297.
- Hadiuzzaman, M., Moniruzzaman, M., Shahjahan, M., Bai, S. C., Min, T., Hossain, Z. (2022). β-glucan: Mode of action and its uses in fish immunomodulation. Frontiers in Marine Science, 9, 905986.
- Jedinak, A., Dudhgaonkar, S., Wu, Q. L., Simon, J., Sliva, D. (2011). Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling. Nutrition Journal, 10, 52.
- Jørgensen, J. B., Lunde, H., Jensen, L., Whitehead, A. S., Robertsen, B. (2000). Serum amyloid A transcription in Atlantic salmon (Salmo salar L.) hepatocytes is enhanced by stimulation with macrophage factors, recombinant human IL-1 beta, IL-6 and TNF alpha or bacterial lipopolysaccharide. Developmental and Comparative Immunology, 24(6-7), 553-563.
- Jung-Schroers, V., Adamek, M., Harris, S., Syakuri, H., Jung, A., Irnazarow, I., Steinhagen, D. (2018). Response of the intestinal mucosal barrier of carp (Cyprinus carpio)to a bacterial challenge by Aeromonas hydrophila intubation after feeding with β-1,3/1,6-glucan. Journal of Fish Diseases, 41(7), 1077-1092.
- Kim, H. S., Hong, J. T., Kim, Y., Han, S. B. (2011). Stimulatory effect of β-glucans on immune cells. Immune Network, 11(4), 191-195.
- Kumari, J., Sahoo, P. K. (2006). Dietary immunostimulants influence specific immune response and resistance of healthy and immunocompromised Asian catfish Clarias batrachus to Aeromonas hydrophila infection. Diseases of Aquatic Organisms, 70(1-2), 63-70.
- Kurhaluk, N., Grudniewska, J., Tkaczenko, H. (2024). Modulation of oxidative stress biomarkers and lysosomal functioning in gills and liver of rainbow trout (Oncorhynchus mykiss Walbaum) fed a diet supplemented with yeast β-glucans. Fisheries & Aquatic Life, 32, 44-62.
- Leal, E., Ordás, M. C., Soleto, I., Zarza, C., McGurk, C., Tafalla, C. (2019). Functional nutrition modulates the early immune response against viral haemorrhagic septicaemia virus (VHSV) in rainbow trout. Fish & Shellfish Immunology, 94, 769-779.
- Li, H., Liu, H., Bi, L., Liu, Y., Jin, L., Peng, R. (2024). Immunotoxicity of microplastics in fish. Fish & Shellfish Immunology, 150, 109619.
- Liu, Y., Wu, Q., Wu, X., Algharib, S. A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y., Wang, Y. (2021). Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. International Journal of Biological Macromolecules, 173, 445-456.
- Machuca, C., Méndez-Martínez, Y., Reyes-Becerril, M., Angulo, C. (2022). Yeast β-glucans as fish immunomodulators: a review. Animals, 12(16), 2154.
- McDonald, J. K., Barrett, A. J. (1986). Exopeptidases. In: Mammalian Proteases: A glossary and Bibliography. Academic Press, London: 114-144.
- Meena, D. K., Das, P., Kumar, S., Mandal, S. C., Prusty, A. K., Singh, S. K., Akhtar, M. S., Behera, B. K., Kumar, K., Pal, A. K., Mukherjee, S. C. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiology and Biochemistry, 39(3), 431-457.
- Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the anti-oxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4), 407-412.
- Murphy, E. J., Rezoagli, E., Major, I., Rowan, N. J., Laffey, J. G. (2020). β-glucan metabolic and immunomodulatory properties and potential for clinical application. Journal of Fungi (Basel, Switzerland), 6(4), 356.
- Petit, J., Bailey, E. C., Wheeler, R. T., de Oliveira, C. A. F., Forlenza, M., Wiegertjes, G. F. (2019). Studies into β-glucan recognition in fish suggests a key role for the C-type lectin pathway. Frontiers in Immunology, 10, 280.
- Porter, D., Peggs, D., McGurk, C., Martin, S. A. M. (2022). Immune responses to prebiotics in farmed salmonid fish: How transcriptomic approaches help interpret responses. Fish & Shellfish Immunology, 127, 35-47.
- Reznick, A. Z., Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods in Enzymology, 233, 357-363.
- Rodrigues, M. V., Zanuzzo, F. S., Koch, J. F. A., de Oliveira, C. A. F., Sima, P., Vetvicka, V. (2020). Development of fish immunity and the role of β-glucan in immune responses. Molecules (Basel, Switzerland), 25(22), 5378.
- Siwicki, A. K., Anderson, D. P. (1993). Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In: Fish Disease Diagnosis and Prevention Methods (Ed.) A.K. Siwicki, D.P. Anderson, J. Waluga, Wydawnictwo IRS, Olsztyn: 105-112.
- Smeekens, S. P., Gresnigt, M. S., Becker, K. L., Cheng, S. C., Netea, S. A., Jacobs, L., Jansen, T., van de Veerdonk, F. L., Williams, D. L., Joosten, L. A., Dinarello, C. A., Netea, M. G. (2015). An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism. Cytokine, 71(2), 215-222.
- Song, L., Zhou, Y., Ni, S., Wang, X., Yuan, J., Zhang, Y., Zhang, S. (2020). Dietary intake of β-glucans can prolong lifespan and exert an antioxidant action on aged fish Nothobranchius guentheri. Rejuvenation Research, 23(4), 293-301.
- Stier, H., Ebbeskotte, V., Gruenwald, J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition Journal, 13, 38.
- Tkachenko, H., Grudniewska, J., Kurhaluk, N. (2022). Effects of dietary yeast α-1.3/1.6-glucans on oxidative stress biomarkers in hearts and livers of rainbow trout (Oncorhynchus mykiss Walbaum), European whitefish (Coregonus lavaretus L.), and grayling (Thymallus thymallus L.). Fisheries & Aquatic Life, 30, 149-168.
- Trivedi, P. C., Bartlett, J. J., Pulinilkunnil, T. (2020). Lysosomal biology and function: Modern view of cellular debris bin. Cells, 9(5), 1131.
- Velazquez-Carriles, C., Macias-Rodríguez, M. E., Carbajal-Arizaga, G. G., Silva-Jara, J., Angulo, C., Reyes-Becerril, M. (2018). Immobilizing yeast β-glucan on zinc-layered hydroxide nanoparticle improves innate immune response in fish leukocytes. Fish & Shellfish Immunology, 82, 504-513.
- Vetvicka, V., Vannucci, L., Sima, P. (2013). The effects of β-glucan on fish immunity. North American Journal of Medical Sciences, 5(10), 580-588.
- Waikhom, D., Kezhedath, J., Nediyirippil Suresh, S., Bedekar, M. K., Varghese, T., Prasad Kurcheti, P., Kooloth Valappil, R. (2024). Induction of trained immunity using β-glucan and its protective responses in Nile tilapia, Oreochromis niloticus. Developmental and Comparative Immunology, 157, 105188.
- Xu, X., Yasuda, M., Nakamura-Tsuruta, S., Mizuno, M., Ashida, H. (2012). β-glucan from Lentinus edodes inhibits nitric oxide and tumor necrosis factor-á production and phosphorylation of mitogen-activated protein kinases in lipopolysaccharide-stimulated murine RAW 264.7 macrophages. The Journal of Biological Chemistry, 287(2), 871-878.
- Zeng, L., Wang, Y. H., Ai, C. X., Zhang, J. S. (2018). Differential effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker Larimichthys crocea under acute copper stress. Ecotoxicology and Environmental Safety, 165, 78-87.
- Zhang, Y., Liu, X., Zhao, J., Wang, J., Song, Q., Zhao, C. (2022). The phagocytic receptors of β-glucan. International Journal of Biological Macromolecules, 205, 430-41.
- Zhong, X., Wang, G., Li, F., Fang, S., Zhou, S., Ishiwata, A., Tonevitsky, A. G., Shkurnikov, M., Cai, H., Ding, F. (2023). Immunomodulatory effect and biological significance of β-glucans. Pharmaceutics, 15(6), 1615.