Have a personal or library account? Click to login
Can the elimination of cyanobacteria by micro-sieving be an innovative lake purity improvement method? Cover

Can the elimination of cyanobacteria by micro-sieving be an innovative lake purity improvement method?

Open Access
|Feb 2023

References

  1. Amaral, P.A.P., Coral, L.A., Nagel-Hassemer, M.E., Belli, T.J., Lapolli, F.R. (2013). Association of dissolved air flotation (DAF) with microfiltration for cyanobacterial removal in water supply. Desalination and Water Treatment, 51, 1664-1671.10.1080/19443994.2012.715128
  2. Ayguna, A., Yilmaz, T. (2010). Improvement of coagulation-flocculation process for treatment of detergent wastewaters using coagulant aids. International Journal of Chemical and Environmental Engineering, 1(2), 97-101.
  3. Barnard, M.A., Chaffin, J.D., Plaas, H.E., Boyer, G.L., Wei, B., Wilhelm, S.W., Rossignol, K.L., Braddy, J.S., Bullerjahn, G.S., Bridgeman, T.B., Davis, T.W., Wei, J., Bu, M., Paerl, H.W. (2021). Roles of nutrient limitation on western Lake Erie CyanoHAB Toxin Production. Toxins, 13(1), 47.10.3390/toxins13010047782810433435505
  4. Benoufella, F., Laplanche, A., Boisdon, V., Bourbigot, M.M. (1994). Elimination of Microcystis cyanobacteria (blue-green algae) by an ozoflotation process: a pilot plant study. Water Science & Technology, 30(8), 245-257.10.2166/wst.1994.0418
  5. Burford, M.A., Gobler, C.J., Hamilton, D.P., Visser, P.M., Lurling, M., Codd, G.A. (2019). Solutions for managing cyanobacterial blooms: A scientific summary for policy makers. IOC/UNESCO, Paris (IOC/INF-1382).
  6. Camacho, F.P., Bongiovani, M.C., Arakawa, F.S., Shimabuku, Q.L., Vieira, A.M.S., Bergamasco, R. (2013). Advanced processes of cyanobacteria and cyanotoxins removal in supply water treatment. Chemical Engineering Transactions, 32, 421-426.
  7. Chittora, D., Meena, M., Barupal, T., Swapnil, P., Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochemistry and Biophysics Reports. 22:100737.10.1016/j.bbrep.2020.100737
  8. Chów, C.W.K., Panglisch, S., House, J., Drikas, M., Burch, M.D., Gimbel, R. (1997). A study of membrane filtration for the removal of cyanobacterial cells. AQUA, 46(6), 324-334.
  9. Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917), 1014–1015.10.1126/science.1167755
  10. Czyżewska, W, Piontek M. (2019). The efficiency of microstrainers filtration in the process of removing phytoplankton with special consideration of cyanobacteria. Toxins, 11(5), 285.10.3390/toxins11050285656327431117283
  11. EPA 625/1-75-003a. (1975). Process design manual for suspended solids removal. U.S. Environmental Protection Agency, Technology Transfer.
  12. European Commission (2000). Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for community action in the field of water policy. Official Journal 2000 L 327/1, European Commission, Brussels.
  13. Fernandes, P., Pedersen, L-F., Pedersen, P.B. (2015). Microscreen effects on water quality in replicated recirculating aquaculture systems. Aquacultural Engineering, 65, 17–26.10.1016/j.aquaeng.2014.10.007
  14. Gałczyński, Ł., Ociepa, A. (2008). Toxins produced by Cyanoprokaryota. Ecological Chemistry and Engineering, S. 15(1), 69-76.
  15. Garcia Chanc, L.M., Van Brunt, S.C., Majsztrik, J.C., White, S.A. (2019). Short and long-term dynamics of nutrient removal in floating treatment wetlands. Water research, 159, 153-163.10.1016/j.watres.2019.05.01231091480
  16. Grochowiecka, W., Świderska-Bróż, M., Wolska, M. (2009). Efficiency of the Micro-Sieve Process Towards the Removal of Phytoplankton Organisms and Some Chemical Pollutants from Surface Water. Ochrona Srodowiska, 31(2), 25.
  17. Huang, W., Chu, H., Dong, B., Hu, M., Yu, Y. (2015). A membrane combined process to cope with algae blooms in water. Desalination, 355, 99-109.10.1016/j.desal.2014.09.037
  18. Islami, H.R., Filizadeh, Y., Soltani, M., Hossein, F.M. (2010). The use of barley straw for controlling of cyanobacteria under field application. Journal of Fisheries and Aquatic Science, 5(5), 394-401.10.3923/jfas.2010.394.401
  19. Istvánovics, V., Pettersson, K., Rodrigo, M.A., Pierson, D., Padisák, J., Colom, W. (1993). Gloeotrichia echinulata, a colonial cyanobacterium with a unique phosphorus uptake and life strategy. Journal of Plankton Research, 15(5), 531–552.10.1093/plankt/15.5.531
  20. Jilek, B. (1994). Phytoplankton and zooplankton removing on the micro-sieves. Conference: Water supply of cities and villages. Poznań, pp. 779-788 (in Polish).
  21. Jones, T. G., Willis, N., Gough, R., Freeman, C. (2017). An experimental use of floating treatment wetlands (FTWs) to reduce phytoplankton growth in freshwaters. Ecological Engineering, 99, 316-323,10.1016/j.ecoleng.2016.11.002
  22. Kobos, J., Błaszczyk, A., Hohlfeld, N., Toruńska-Sitarz, A., Krakowiak, A., Hebel, A., Stryk, K., Grabowska, M., Toporowska, M., Kokociński, M., Messyasz, B., Rybak, A., Napiórkowska-Krzebietke, A., Nawrocka, L., Pełechata, A., Budzyńska, A., Zagajewski, P., Mazur-Marzec H. (2013). Cyanobacteria and cyanotoxins in Polish freshwater bodies. Oceanological and Hydrobiological Studies, 42(4), 358–378.10.2478/s13545-013-0093-8
  23. Langer, M., Schermann, A. (2013). Feasibility of the microsieve technology for advanced phosphorus removal. Final Report OXERAM, Kompentenzzentrum Wasser Berlin gGmbH, pp. 83.
  24. Ljunggren, M. (2006). Micro screening in wastewater treatment-an overview. Vatten, 62, 171–177.
  25. López-Muńoz, A. S., Arsuaga, J. M., Van der Bruggen, B. (2009). Influence of membrane solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Separation and Purification Technology, 66(1), 194–201.10.1016/j.seppur.2008.11.001
  26. Mackay, E.B., Maberly, S.C., Pan, G., Reitzel, K., Bruere, A., Corker, N., Douglas, G., Egemose, S., Hamilton, D., Hatton-Ellis, T., Huser, B., Li, W., Meis, S., Moss, B., Lürling, M., Phillips, G., Yasseri, S., Spears, B.M. (2014). Geoengineering in lakes: welcome attraction or fatal distraction? Inland Waters, 4, 349-356.10.5268/IW-4.4.769
  27. Mantzouki, E., Lürling, M., Fastner, J., de Senerpont Domis, L., Wilk-Woźniak, E. et al. (2018). Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins, 10(4), 156.10.3390/toxins10040156592332229652856
  28. Napiórkowska-Krzebietke, A. (2015). Cyanobacterial bloom intensity in the ecologically relevant state of lakes-an approach to Water Framework Directive implementation. Oceanological and Hydrobiological Studies, 44(1), 97-108.10.1515/ohs-2015-0010
  29. Napiórkowska-Krzebietke, A., Dunalska, J., Grochowska, J., Łopata, M., Brzozowska, R. (2015). Intensity and thresholds of cyanobacterial blooms – an approach to determine the necessity to restore urban lakes. Carpathian Journal of Earth and Environmental Sciences, 10(2), 123-132.
  30. Napiórkowska-Krzebietke, A., Hutorowicz, A. (2015). The physicochemical background for the development of potentially harmful cyanobacterium Gloeotrichia echinulata J. S. Smith ex Richt. Journal of Elementology, 20(2), 363–376.10.5601/jelem.2014.19.4.756
  31. Newcombe, G., House, J., Ho, L., Baker, P., Burch, M. (2010). Management strategies for cyanobacteria (blue-green algae): A guide for water utilities. Research Report 74. Water Quality Research Australia, pp. 100.
  32. Pathak, J., Rajneesh, Maurya P. K., Singh, S. P., Häder D.-P., Sinha, R. P. (2018). Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Frontiers in Environmental Science 6: 7.10.3389/fenvs.2018.00007
  33. Pettersson, K., Herlitz, E., Istvánovics, V. (1993). The role of Gloeotrichia echinulata in the transfer of phosphorus from sediments to water in Lake Erken. Hydrobiologia, 253, 123–129.10.1007/BF00050732
  34. Pfeiffer, T. J., Osborn, A., Davis, M. (2008). Particle sieve analysis for determining solids removal efficiency of water treatment components in a recirculating aquaculture system. Aquacultural Engineering, 39(1), 24–29.10.1016/j.aquaeng.2008.05.003
  35. Piontek, M., Czyżewska, W. (2012). Efficiency of drinking water treatment processes. Removal of phytoplankton with special consideration for cyanobacteria and improving physical and chemical parameters. Polish Journal of Environmental Studies, 21(6), 1797–1805.
  36. Scalize, P. S., Souza, L. M. D., Albuquerque, A. (2019). Reuse of alum sludge for reducing flocculant addition in water treatment plants. Environment Protection Engineering, 45(1), 57-70.10.37190/epe190105
  37. Tymowski, R., Duthie, H. C. (2000). Life strategy and phosphorus relations of the cyanobacterium Gloeotrichia echinulata in an oligotrophic Precambrian Shield lake. Archiv für Hydrobiologie, 148(3), 321–332.10.1127/archiv-hydrobiol/148/2000/321
  38. Westrick, J. A., Szlag, D. C., Southwell, B. J., Sinclair, J. (2010). A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and Bioanalytical Chemistry, 397(5), 1705–1714.10.1007/s00216-010-3709-520502884
  39. World Health Organization (2011). Guidelines for drinking-water quality, 4th ed [electronic resource]: Switzerland, India, Malta.
DOI: https://doi.org/10.2478/aopf-2022-0017 | Journal eISSN: 2545-059X | Journal ISSN: 2545-0255
Language: English
Page range: 184 - 191
Submitted on: Nov 14, 2022
Accepted on: Dec 28, 2022
Published on: Feb 18, 2023
Published by: Stanisław Sakowicz Inland Fisheries Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Agnieszka Napiórkowska-Krzebietke, Marek Łuczyński, published by Stanisław Sakowicz Inland Fisheries Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.