Have a personal or library account? Click to login
Effect of dietary soybean meal replacement with a combination of white lupine seeds and insect meals on the growth performance, carcass traits, and meat quality of rabbits Cover

Effect of dietary soybean meal replacement with a combination of white lupine seeds and insect meals on the growth performance, carcass traits, and meat quality of rabbits

Open Access
|Oct 2025

References

  1. Alves A.P.C., Paulino R.R., Pereira R.T., Costa D.V., Rosa P.V. (2020). Nile tilapia fed insect meal: growth and innate immune response in different times under lipopolysaccharide challenge. Aquac. Res., 52: 529–540.
  2. AOAC. (2006). Association of Official Analytical Chemists. Official methods of analysis. 18th ed. Arlington (VA): Association of Analytical Communities.
  3. Bastianelli D., Grosjean F., Peyronnet C., Duparque M., Regnier J. M. (1998). Feeding value of pea (Pisum sativum, L.) 1. Chemical composition of different categories of pea. Anim. Sci., 67: 609–619.
  4. Bellier R., Gidenne T. (1996). Consequences of reduced fibre intake on digestion, rate of passage and caecal microbial activity in the young rabbit. Br. J. Nutr., 75: 353–363.
  5. Bovera F., Loponte R., Marono S., Piccolo G., Parisi G., Iaconisi V., Gasco L., Nizza A. (2016). Use of larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci., 94: 639–647.
  6. Calvert C.C., Martin R.D., Morgan N.O. (1969). Housefly pupae as food for poultry. J. Econ. Entomol., 62: 938–939.
  7. Chilomer K., Zaleska K., Ciesiolka D., Gulewicz P., Frankiewicz A., Gulewicz, K. (2010). Changes in the alkaloid, alpha-galactoside and protein fractions content during germination of different lupin species. Acta Soc. Bot. Poloniae, 79(1): 11–20.
  8. Collavo A., Glew R.H., Huang Y.S., Chuang L.T., Bosse R., Paoletti M.G. (2005). House cricket small-scale farming. In: Ecological implications of minilivestock: potential of insects, rodents, frogs and snails, 27, 515–540. Science Publiscers Inc., Enfield, New Hampshire.
  9. Combes S., Fortun-Lamothe L., Cauquil L., Gidenne T. (2013). Engineering the rabbit digestive ecosystem to improve digestive health and efficacy. Animal, 7: 1429–1439.
  10. Cullere M., Singh Y., Gerencsér Z., Matics Z., Cappellozza S., Dalle Zotte A. (2022). Silkworm (Bombyx mori L.) oil in growing rabbit nutrition: effects on meat physicochemical traits, sensory profile and shelf-life. J. Insects Food Feed, 8: 733–742.
  11. Cullere M., Szendrő Z., Matics Z., Gerencsér Z., Singh Y., Dalle Zotte A. (2024). Effect of silkworm (Bombyx mori L.) pupae oil dietary inclusion on growth performance, digestibility and carcase traits of growing rabbits. Ital. J. Anim. Sci., 23: 751–757.
  12. Dalle Zotte A., Singh Y., Gerencsér Z., Matics Z., Szendrő Z., Cappellozza S., Cullere, M. (2022). Feeding silkworm (Bombyx mori L.) oil to growing rabbits improves the fatty acid composition of meat, liver and perirenal fat. Meat Sci., 193: 108944.
  13. Daszkiewicz T., Gugołek A., Janiszewski P., Kubiak D., Czoik M. (2012). The effect of intensive and extensive production systems on carcass quality in New Zealand White rabbits. World Rabbit Sci. 20: 25–33.
  14. Diener S., Zurbrügg C., Roa Gutiérrez F., Nguyen D.H., Morel A., Koottatep T., Tockner K. (2011). Black soldier fly larvae for organic waste treatment – prospects and constraints. Proc 2nd International Conference on Solid Waste Management in the Developing Countries, Khulna, Bangladesh, 52–59.
  15. Donatti F.C. (1992). Utilization of silkworm pupae meal (Bombyx mori L.) as a source of protein in the diet of growing-finishing pigs. R. Soc. Bras. Zootec., 21: 378–383.
  16. Food and Agriculture Organization of the United Nations (FAO) FAOSTAT. (2022). Available online: https://www.fao.org/faostat/en/#home (accessed on 15 November 2024).
  17. Fortun-Lamothe L., Boullier S. (2007). A review on the interactions between gut microflora and digestive mucosal immunity. Possible ways to improve the health of rabbits. Livest. Sci., 107: 1–18.
  18. Gasco L., Biancarosa I., Liland N.S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green Sust. Chem., 23: 67–79.
  19. Gugołek A., Juśkiewicz J., Kowalska D., Zwoliński C., Sobiech P., Strychalski J. (2018). Physiological responses of rabbits fed with diets containing rapeseed meal, white lupine and pea seeds as soybean meal substitutes. Cienc. Agrotec., 42: 297–306.
  20. Gugołek A., Kowalska D., Strychalski J., Ognik K., Juśkiewicz J. (2021). The effect of dietary supplementation with silkworm pupae meal on gastrointestinal function, nitrogen retention and blood biochemical parameters in rabbits. BMC Vet. Res., 17: 204.
  21. Högberg A., Pickova J., Babol J., Andersson K., Dutta P.C. (2002). Muscle lipids, vitamins E and A, and lipid oxidation as affected by diet and RN genotype in female and castrated male Hampshire crossbreed pigs. Meat Sci., 60: 411–420.
  22. Józefiak A., Benzertiha A., Kierończyk B., Łukomska A., Wesołowska I., Rawski M. (2020). Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals, 10: 577.
  23. Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D. (2018). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Technol., 240: 170–183.
  24. Klasing K.C., Thacker P., Lopez M.A., Calvert C.C. (2000). Increasing the calcium content of mealworms (Tenebrio molitor) to improve their nutritional value for bone mineralization of growing chicks. J. Zoo Wild. Medic. 31: 512–517.
  25. Kowalska D., Gugołek A., Strychalski J. (2020). Evaluation of slaughter parameters and meat quality of rabbits fed diets with silkworm pupae and mealworm larvae meals. Ann. Anim. Sci., 20: 551–564.
  26. Kroc M., Rybiński W., Wilczura, P., Kamel K., Kaczmarek Z., Barzyk P., Święcicki W. (2017). Quantitative and qualitative analysis of alkaloids composition in the seeds of a white lupin (Lupinus albus L.) collection. Genet. Resour. Crop Evol., 64: 1853–1860.
  27. Lo Fiego D.P., Santoro P., Macchioni P., Mazzoni D., Piattoni F., Tassone F., De Leonibus E. (2004). The effect of dietary supplementation of vitamins C and E on the α-tocopherol content of muscles, liver and kidney, on the stability of lipids, and on certain meat quality parameters of the longissimus dorsi of rabbits. Meat Sci., 67: 319–327.
  28. Makkar H.P.S., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33.
  29. Peiretti P.G., Meineri G. (2008). Effects on growth performance, carcass characteristics, and the fat and meat fatty acid profile of rabbits fed diets with chia (Salvia hispanica L.) seed supplements. Meat Sci., 80: 1116–1121.
  30. Pereira A., Ramos F., Sanches Silva A. (2002). Lupin (Lupinus albus L.) Seeds: Balancing the Good and the Bad and Addressing Future Challenges. Molecules, 27: 8557.
  31. Pinheiro V., Guedes C.M., Outor-Monteiro D., Mourão J.L. (2009). Effects of fibre level and dietary mannanoligosaccharides on digestibility, caecal volatile fatty acids and performances of growing rabbits. Anim. Feed Sci. Technol., 148: 288–300.
  32. Piccolo G., Iaconisi V., Marono S., Gasco L., Loponte R., Nizza S., Bovera F., Parisi G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol., 226: 12–20.
  33. Prachom N., Boonyoung S., Hassaan M.S., El-Haroun E., Davies S.J. (2021). Preliminary evaluation of Superworm (Zophobas morio) larval meal as a partial protein source in experimental diets for juvenile Asian sea bass, Lates calcarifer. Aquac. Nutr., 27: 1304–1314.
  34. Purwin C., Gugołek A., Strychalski J., Fijałkowska M. (2019). Productivity, nutrient digestibility, nitrogen retention, and meat quality in rabbits fed diets supplemented with Sida hermaphrodita. Animals, 9: 901.
  35. Rhee K.S., Dutson T.R., Smith G.C., Hostetler R.L., Reiser R. (1982). Cholesterol content of raw and cooked beef longissimus muscles with different degrees of marbling. J. Food Sci., 47: 716–719.
  36. Rumbos C.I., Athanassiou C. (2021). The Superworm, Zophobas morio (Coleoptera: Tenebrionidae): A ‘Sleeping Giant’ in Nutrient Sources. J. Insect Sci., 21: 13.
  37. Song Z., Li G., Guan F., Liu W. (2018). Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers, 10: 389.
  38. Soon C.Y., Tee Y.B., Tan C.H., Rosnita A.T., Khalina A. (2018). Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int. J. Biol. Macromol., 108: 135–142.
  39. StatSoft Inc. (2015). Statistica (data analysis software system), Version 12.
  40. Strychalski J., Gugołek A., Antoszkiewicz Z., Kowalska D., Konstantynowicz M. (2016). Biologically active compounds in selected tissues of white-fat and yellow-fat rabbits and their production performance parameters. Livest. Sci., 183: 92–97.
  41. Strychalski J., Juśkiewicz J., Kowalska D., Gugołek A. (2021). Performance indicators and gastrointestinal response of rabbits to dietary soybean meal replacement with silkworm pupae and mealworm larvae meals. Arch. Anim. Nutr., 75: 294–310.
  42. Šufliarský P., Volek Z., Ebeid T.A., Zita L. (2024). Dietary inclusion of white lupine seeds and their byproducts in rabbits can contribute to EU agricultural sustainability: a review. World Rabbit Sci., 32: 145–160.
  43. Sulli K.C., Sun J., Giraud D.W., Moxley R.A., Driskell J.A. (1998). Effects of β-carotene and α-tocopherol on the levels of tissue cholesterol and triglyceride in hypercholesterolemic rabbits. J. Nutr. Biochem., 9: 344–350.
  44. Suresh H.N., Mahalingam C.A., Pallavi. (2012). Amount of chitin, chitosan and chitosan based on chitin weight in pure races of multivoltine and bivoltine silkworm pupae Bombyx mori L. Int. J. Sci. Nat. 3: 214–216.
  45. Tudisco R., Lombardi P., Bovera F., d’Angelo D., Cutrignelli M.I., Mastellone V., Terzi V., Avallone L., Infascelli F. (2006). Genetically modified soya bean in rabbit feeding: detection of DNA fragments and evaluation of metabolic effects by enzymatic analysis. Anim. Sci. 82: 193–199.
  46. Uhlířová L., Volek Z., Marounek M. (2018). White lupin bran and its effects on the growth performance, carcass characteristics and digestibility of nutrients in fattening rabbits. World Rabbit Sci., 26(1): 1–6.
  47. Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583–3597.
  48. Volek Z., Marounek M. (2009). Whole white lupin (Lupinus albus cv. Amiga) seeds as a source of protein for growing-fattening rabbits. Anim. Feed Sci. Technol., 152: 322–329.
  49. Volek Z, Uhlířová L, Zita L. (2020). Narrow-leaved lupine seeds as a dietary protein source for fattening rabbits: a comparison with white lupine seeds. Animal, 14(4): 881–888.
  50. Volek Z., Zita L., Adámková A., Adámek M., Mlček J., Plachý V. (2023). Dietary inclusion of crickets (Acheta domesticus) and yellow mealworm meal (Tenebrio molitor) in comparison with soybean meal: effect on the growth, total tract apparent digestibility, and nitrogen balance of fattening rabbits. Animals, 13: 1637.
  51. Wiedemann M., Gurrola-Díaz C.M., Vargas-Guerrero B., Wink M., García-López P.M., Düfer M. (2015). Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression. Molecules, 20(10): 19085–19100.
  52. Wijesekara T., Baojun X. (2024). New Insights into Sources, Bioavailability, Health-Promoting Effects, and Applications of Chitin and Chitosan. J. Agric. Food Chem., 72: 17138–17152.
  53. Xu Z. (2008). Comparison of extraction methods for quantifying vitamin E from animal tissues. Bioresour. Technol. 99: 8705–8709.
DOI: https://doi.org/10.2478/aoas-2025-0112 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Mar 21, 2025
Accepted on: Oct 1, 2025
Published on: Oct 16, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Dorota Kowalska, Janusz Strychalski, Andrzej Gugołek, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT