Have a personal or library account? Click to login
Fish Vaccination: Differences Between Monovalent and Polyvalent Bacterial Vaccines Cover

Fish Vaccination: Differences Between Monovalent and Polyvalent Bacterial Vaccines

Open Access
|Oct 2025

References

  1. Ababouch L., Nguyen K.A.T., Castro de Souza M., Fernandez‐Polanco J. (2023). Value chains and market access for aquaculture products. J. World Aquacult Soc., 54: 527–553.
  2. Abu-Elala N.M., Samir A., Wasfy M., Elsayed M. (2019). Efficacy of injectable and immersion polyvalent vaccine against streptococcal infections in broodstock and offspring of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 88: 293–300.
  3. Acosta F., Collet B., Lorenzen N., Ellis A.E. (2006). Expression of the glycoprotein of viral haemorrhagic septicaemia virus (VHSV) on the surface of the fish cell line RTG-P1 induces type 1 interferon expression in neighbouring cells. Fish Shellfish Immunol., 21: 272–278.
  4. Adams A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol., 90: 210–214.
  5. Adams A., Aoki T., Berthe C., Grisez L., Karunasagar I. (2008). Recent technological advancements on aquatic animal health and their contributions toward reducing disease risks – a review. Dis. Asian Aquacult. VI. Fish Health Sect. Asian Fish. Soc., Colombo, Sri Lanka, 2012: 71–88.
  6. Ahangarzadeh M., Houshmand H., Mozanzadeh M.T., Kakoolaki S., Nazemroaya S., Sepahdari A., Peyghan R., Ajdari A., Sadr A.S. (2023). Effect of killed autogenous polyvalent vaccines against Vibrio harveyi, V. alginolyticus and Streptococcus iniae on survival and immunogenicity of Asian seabass (Lates calcarifer). Fish Shellfish Immunol., 143: 109226.
  7. Ahmad A.L., Chin J.Y., Harun M.H.Z.M., Low S.C. (2022). Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review. J. Water Process Eng., 46: 102553.
  8. Aly S.M., Eissa A.E., ElBanna N.I., Albutti A. (2021). Efficiency of monovalent and polyvalent Vibrio alginolyticus and Vibrio parahaemolyticus vaccines on the immune response and protection in gilthead sea bream, Sparus aurata (L.) against vibriosis. Fish Shellfish Immunol., 111: 145–151.
  9. Barnes A.C., Silayeva O., Landos M., Dong H.T., Lusiastuti A., Phuoc L.H., Delamare‐ Deboutteville J. (2022). Autogenous vaccination in aquaculture: A locally enabled solution towards reduction of the global antimicrobial resistance problem. Rev. Aquacult., 14: 907–918.
  10. Bastardo A., Ravelo C., Castro N., Calheiros J., Romalde J.L. (2012). Effectiveness of bivalent vaccines against Aeromonas hydrophila and Lactococcus garvieae infections in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Shellfish Immunol., 32: 756–761.
  11. Bedekar M.K., Kole S. (2022 a). Fundamentals of fish vaccination. In: Vaccine Design: Methods and Protocols, Vol. 2. Vaccines for Veterinary Diseases., 147–173.
  12. Bedekar M.K., Kole S. (2022 b). Types of vaccines used in aquaculture. In: Fish Immune System and Vaccines., 45–63. Springer.
  13. Ben Hamed S., Tapia‐Paniagua S.T., Moriñigo M.Á., Ranzani‐Paiva M.J.T. (2021). Advances in vaccines developed for bacterial fish diseases, performance and limits. Aquacult. Res., 52: 2377–2390.
  14. Biering E., Villoing S., Sommerset I., Christie K.E. (2005). Update on viral vaccines for fish. Dev. Biol., 121: 97–113.
  15. Bøgwald J., Dalmo R.A. (2019). Review on immersion vaccines for fish: An update 2019. Microorganisms, 7: 627.
  16. Bondad‐Reantaso M.G., MacKinnon B., Karunasagar I., Fridman S., Alday‐Sanz V., Brun E., Le Groumellec M., Li A., Surachetpong W., Karunasagar I. (2023). Review of alternatives to antibiotic use in aquaculture. Rev. Aquacult., 15: 1421–1451.
  17. Cao Y., Liu J., Liu G., Du H., Liu T., Liu T., Li P., Yu Q., Wang G., Wang E. (2024). A nanocarrier immersion vaccine encoding surface immunogenic protein confers cross-immunoprotection against Streptococcus agalactiae and Streptococcus iniae infection in tilapia. Fish Shellfish Immunol., 144: 109267.
  18. Cascarano M.C., Stavrakidis-Zachou O., Mladineo I., Thompson K.D., Papandroulakis N., Katharios P. (2021). Mediterranean aquaculture in a changing climate: Temperature effects on pathogens and diseases of three farmed fish species. Pathogens., 10: 1205.
  19. Chatakondi N., Peterson B.C., Greenway T.E., Byars T.S., Wise D.J. (2018). Efficacy of a live-attenuated Edwardsiella ictaluri oral vaccine in channel and hybrid catfish. J. World Aquacult. Soc., 49:686–691.
  20. Corbeil S., Kurath G., Lapatra S.E. (2000). Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunisation. Fish Shellfish Immunol., 10:711–723.
  21. Costanzo V., Roviello G.N. (2023). The potential role of vaccines in preventing antimicrobial resistance (AMR): An update and future perspectives. Vaccines., 11:333.
  22. Dadar M., Dhama K., Vakharia V.N., Hoseinifar S.H., Karthik K., Tiwari R., Khandia R., Munjal A., Salgado-Miranda C., Joshi S.K. (2017). Advances in aquaculture vaccines against fish pathogens: global status and current trends. Rev. Fish. Sci. Aquacult., 25:184–217.
  23. Dawood M.A.O., El Basuini M.F., Zaineldin A.I., Yilmaz S., Hasan M.T., Ahmadifar E., El Asely A.M., Abdel-Latif H.M.R., Alagawany M., Abu-Elala N.M. (2021). Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens., 10:185.
  24. Deepalakshmi R., GB, B.D. (2019). Immersion vaccination of whole cell (wc) and outer membrane protein (OMP) vaccines in Labeo rohita fingerlings against Staphylococcosis disease. World J. Pharm. Pharmaceut. Sci., 8,1170-1178.
  25. Di Pasquale A., Preiss S., Tavares Da Silva F., Garçon N. (2015). Vaccine adjuvants: From 1920 to 2015 and beyond. Vaccines., 3:320–343.
  26. Du Y., Hu X., Miao L., Chen J. (2022). Current status and development prospects of aquatic vaccines. Front. Immunol., 13:1040336.
  27. Du Y., Tang X., Sheng X., Xing J., Zhan W. (2015). Immune response of flounder (Paralichthys olivaceus) was associated with the concentration of inactivated Edwardsiella tarda and immersion time. Vet. Immunol. Immunopathol., 167:44–50.
  28. El-daim A., Matter A.F., Mohamed M.G., Abdallah M., Raslan W.S., Youssef H.A. (2024). The effectiveness of protective measures against Streptococcosis and the immune responses triggered by the administration of live, live-attenuated, and killed vaccines were assessed in Nile tilapia (Oreochromis niloticus). J. Adv. Vet. Res., 14:316–321.
  29. Embregts C.W.E., Forlenza M. (2016). Oral vaccination of fish: Lessons from humans and veterinary species. Dev. Comp. Immunol., 64:118–137.
  30. Erfanmanesh A., Beikzadeh B., Khanzadeh M. (2023a). Efficacy of polyvalent vaccine on immune response and disease resistance against streptococcosis/lactococcosis and yersiniosis in rainbow trout (Oncorhynchus mykiss). Vet. Res. Commun., 1–9.
  31. Erfanmanesh A., Beikzadeh B., Khanzadeh M., Alishahi M. (2024). Immuno-protective response of Asian seabass (Lates calcarifer) to inactivated vaccines against Streptococcus iniae and Vibrio harveyi. BMC Vet. Res., 20:89.
  32. Erfanmanesh A., Khanzadeh M., Beikzadeh B. (2023b). Field study of Streptococcosis/Lactococcosis and Yersiniosis vaccine effectiveness in immunogenicity and survival rate of rainbow trout (Oncorhynchus mykiss). Fish. Sci. Technol., 12:358–370.
  33. Esteve-Gassent M.D., Fouz B., Amaro C. (2004). Efficacy of a bivalent vaccine against eel diseases caused by Vibrio vulnificus after its administration by four different routes. Fish Shellfish Immunol., 16(2):93–105.
  34. Evans J.J., Klesius P.H., Shoemaker C.A. (2004). Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine, 22:3769–3773.
  35. Fredriksen B.N., Olsen R.H., Furevik A., Souhoka R.A., Gauthier D., Brudeseth B. (2013). Efficacy of a divalent and a multivalent water-in-oil formulated vaccine against a highly virulent strain of Flavobacterium psychrophilum after intramuscular challenge of rainbow trout (Oncorhynchus mykiss). Vaccine, 31:1994–1998.
  36. Ghosh B., Nguyen T.D., Crosbie P.B.B., Nowak B.F., Bridle A.R. (2016). Oral vaccination of first-feeding Atlantic salmon, Salmo salar L., confers greater protection against yersiniosis than immersion vaccination. Vaccine., 34:599–608.
  37. Goncalves G., Santos R.A., Coutinho F., Pedrosa N., Curado M., Machado M., Costas B., Bonneville L., Serrano M., Carvalho A.P. (2022). Oral vaccination of fish against vibriosis using spore-display technology. Front. Immunol., 13:1012301.
  38. Gong H., Wang Q., Lai Y., Zhao C., Sun C., Chen Z., Tao J., Huang Z. (2021). Study on immune response of organs of Epinephelus coioides and Carassius auratus after immersion vaccination with inactivated Vibrio harveyi vaccine. Front. Immunol., 11:622387.
  39. Gravningen K., Thorarinsson R., Johansen L.H., Nissen B., Rikardsen K.S., Greger E., Vigneulle M. (1998). Bivalent vaccines for sea bass (Dicentrachus labrax) against vibriosis and pasteurellosis. J. Appl. Ichthyol., 14:159–162.
  40. Gudding R. (2014). Vaccination as a preventive measure. Fish Vaccin., 12–21.
  41. Halimi M., Alishahi M., Abbaspour M.R., Ghorbanpoor M., Tabandeh M.R. (2018). Efficacy of a Eudragit L30D-55 encapsulated oral vaccine containing inactivated bacteria (Lactococcus garvieae/Streptococcus iniae) in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 81:430–437.
  42. Hayat M., Mohd Yusoff M.S., Samad M.J., Abdul Razak I.S., Md Yasin I.S., Thompson K.D., Hasni K. (2021). Efficacy of feed-based formalin-killed vaccine of Streptococcus iniae stimulates the gut-associated lymphoid tissues and immune response of red hybrid tilapia. Vaccines., 9:51.
  43. Heppell J., Davis H.L. (2000). Application of DNA vaccine technology to aquaculture. Adv. Drug Deliv. Rev., 43:29–43.
  44. Hoare R., Jung S., Ngo T.P.H., Bartie K.L., Thompson K.D., Adams A. (2019). Efficacy of a polyvalent injectable vaccine against Flavobacterium psychrophilum administered to rainbow trout (Oncorhynchus mykiss L.). J. Fish Dis., 42:229–236.
  45. Hoare R., Ngo T.P.H., Bartie K.L., Adams A. (2017). Efficacy of a polyvalent immersion vaccine against Flavobacterium psychrophilum and evaluation of immune response to vaccination in rainbow trout fry (Onchorynchus mykiss L.). Vet. Res., 48:1–13.
  46. Khanzadeh M., Beikzadeh B., Hoseinifar S.H. (2023). The effects of Laurencia caspica algae extract on hemato-immunological parameters, antioxidant defense, and resistance against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Aquacult. Nutr., 2023.1: 8882736.
  47. Khunrang T., Pooljun C., Wuthisuthimethavee S. (2023). Correlation of Streptococcus agalactiae concentration on immune system and effective dose of inactivated vaccine for Chitralada 3 strain Nile tilapia (Oreochromis niloticus) in Thailand. BMC Vet. Res., 19:267.
  48. Kitiyodom S., Yata T., Thompson K.D., Costa J., Elumalai P., Katagiri T., Temisak S., Namdee K., Rodkhum C., Pirarat N. (2021). Immersion vaccination by a biomimetic-mucoadhesive nanovaccine induces humoral immune response of red tilapia (Oreochromis sp.) against Flavobacterium columnare challenge. Vaccines, 9:1253.
  49. Kole S., Kumari R., Anand D., Kumar S., Sharma R., Tripathi G., Makesh M., Rajendran K.V., Bedekar M.K. (2018). Nanoconjugation of bicistronic DNA vaccine against Edwardsiella tarda using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in Labeo rohita vaccinated by different delivery routes. Vaccine, 36:2155–2165.
  50. Kumar S.R., Parameswaran V., Ahmed V.P.I., Musthaq S.S., Hameed A.S.S. (2007). Protective efficiency of DNA vaccination in Asian seabass (Lates calcarifer) against Vibrio anguillarum. Fish Shellfish Immunol., 23:316–326.
  51. Kurath G. (2008). Biotechnology and DNA vaccines for aquatic animals. Rev. Sci. Tech., 27:175.
  52. Kwong K.W.-Y., Xin Y., Lai N.C.-Y., Sung J.C.-C., Wu K.-C., Hamied Y.K., Sze E.T.-P., Lam D.M.-K. (2023). Oral vaccines: A better future of immunization. Vaccines., 11:1232.
  53. Laith A.A., Abdullah M.A., Nurhafizah W.W.I., Hussein H.A., Aya J., Effendy A.W.M., Najiah M. (2019). Efficacy of live attenuated vaccine derived from the Streptococcus agalactiae on the immune responses of Oreochromis niloticus. Fish Shellfish Immunol., 90:235–243.
  54. Lan N.G.T., Dong H.T., Vinh N.T., Salin K.R., Senapin S., Pimsannil K., St-Hilaire S., Shinn A.P., Rodkhum C. (2024). A novel vaccination strategy against Vibrio harveyi infection in Asian seabass (Lates calcarifer) with the aid of oxygen nanobubbles and chitosan. Fish Shellfish Immunol., 149:109557.
  55. Lan N.G.T., Dong H.T., Vinh N.T., Senapin S., Shinn A.P., Salin K.R., Rodkhum C. (2024). Immersion prime and oral boost vaccination with an inactivated Vibrio harveyi vaccine confers a specific immune response and protection in Asian seabass (Lates calcarifer). Fish Shellfish Immunol., 144:109293.
  56. Lan N.G.T., Salin K.R., Longyant S., Senapin S., Dong H.T. (2021). Systemic and mucosal antibody response of freshwater cultured Asian seabass (Lates calcarifer) to monovalent and bivalent vaccines against Streptococcus agalactiae and Streptococcus iniae. Fish Shellfish Immunol., 108:7–13.
  57. Lecocq‐Xhonneux F., Thiry M., Dheur I., Rossius M., Vanderheijden N., Martial J., De Kinkelin P. (1994). A recombinant viral haemorrhagic septicaemia virus glycoprotein expressed in insect cells induces protective immunity in rainbow trout. J. Gen. Virol., 75:1579–1587.
  58. Lee P.-T., Yamamoto F.Y., Low C.-F., Loh J.-Y., Chong C.-M. (2021). Gut immune system and the implications of oral-administered immunoprophylaxis in finfish aquaculture. Front. Immunol., 12:773193.
  59. Linh N.V., Dien L.T., Dong H.T., Khongdee N., Hoseinifar S.H., Musthafa M.S., Dawood M.A.O., Van Doan H. (2022). Efficacy of different routes of formalin-killed vaccine administration on immunity and disease resistance of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae. Fishes., 7:398.
  60. Locke J.B., Vicknair M.R., Ostland V.E., Nizet V., Buchanan J.T. (2010). Evaluation of Streptococcus iniae killed bacterin and live attenuated vaccines in hybrid striped bass through injection and bath immersion. Dis. Aquat. Org., 89:117–123.
  61. Ma J., Bruce T.J., Jones E.M., Cain K.D. (2019). A review of fish vaccine development strategies: Conventional methods and modern biotechnological approaches. Microorganisms., 7:569.
  62. Ma J., Bruce T.J., Sudheesh P.S., Knupp C., Loch T.P., Faisal M., Cain K.D. (2019). Assessment of cross‐protection to heterologous strains of Flavobacterium psychrophilum following vaccination with a live‐attenuated coldwater disease immersion vaccine. J. Fish Dis., 42:75–84.
  63. Ma R., Yang G., Xu R., Liu X., Zhang Y., Ma Y., Wang Q. (2019). Pattern analysis of conditional essentiality (PACE)-based heuristic identification of an in vivo colonization determinant as a novel target for the construction of a live attenuated vaccine against Edwardsiella piscicida. Fish Shellfish Immunol., 90:65–72.
  64. Magadan S., Sunyer O.J., Boudinot P. (2015). Unique features of fish immune repertoires: particularities of adaptive immunity within the largest group of vertebrates. Pathogen-host Interact., 235–264.
  65. Manimaran M., Kannabiran K. (2024). Streptomyces extract supplemented heat-killed vaccine treatment effectively suppress the Vibrio anguillarum infection in Tilapia (Oreochromis niloticus) fish.
  66. Mashoof S., Criscitiello M.F. (2016). Fish immunoglobulins. Biology., 5:45.
  67. Meachasompop P., Bunnoy A., Keaswejjareansuk W., Dechbumroong P., Namdee K., Srisapoome P. (2023). Development of immersion and oral bivalent nanovaccines for streptococcosis and columnaris disease prevention in fry and fingerling Asian seabass (Lates calcarifer) nursery farms. Vaccines., 12:17.
  68. Medina-Félix D., Garibay-Valdez E., Vargas-Albores F., Martínez-Porchas M. (2023). Fish disease and intestinal microbiota: A close and indivisible relationship. Rev. Aquacult., 15:820–839.
  69. Mohamad A., Mursidi F.-A., Zamri-Saad M., Amal M.N.A., Annas S., Monir M.S., Loqman M., Hairudin F., Al-Saari N., Ina-Salwany M.Y. (2022). Laboratory and field assessments of oral vibrio vaccine indicate the potential for protection against vibriosis in cultured marine fishes. Animals., 12:133.
  70. Mohamad A., Zamri-Saad M., Amal M.N.A., Al-Saari N., Monir M.S., Chin Y.K., Md Yasin I.-S. (2021). Vaccine efficacy of a newly developed feed-based whole-cell polyvalent vaccine against vibriosis, streptococcosis and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Vaccines., 9:368.
  71. Mohammadi Y., Mesbah M., Dezfoulnejad M.C., Mehrgan M.S., Islami H.R. (2021). Growth performance, blood biochemical parameters, immune response, and antioxidant defense of Asian seabass (Lates calcarifer) fingerlings exposed to monovalent and bivalent vaccines against Streptococcus iniae and Vibrio harveyi. Aquacult. Int., 29:2751–2767.
  72. Mohd Ali N.S., Saad M.Z., Azmai M.N.A., Salleh A., Zulperi Z.M., Manchanayake T., Zahaludin M.A.D., Basri L., Mohamad A., Md Yasin I.S. (2023). Immunogenicity and efficacy of a feed-based bivalent vaccine against streptococcosis and motile aeromonad septicemia in red hybrid tilapia (Oreochromis sp.). Animals., 13:1346.
  73. Mondal H., Thomas J. (2022). A review on the recent advances and application of vaccines against fish pathogens in aquaculture. Aquacult. Int., 1–30.
  74. Monir M.S., Yusoff M.S.M., Zamri-Saad M., Amal M.N.A., Mohamad A., Azzam-Sayuti M., Ina-Salwany M.Y. (2022). Effect of an oral bivalent vaccine on immune response and immune gene profiling in vaccinated red tilapia (Oreochromis spp.) during infections with Streptococcus iniae and Aeromonas hydrophila. Biology., 11:1268.
  75. Monir M.S., Yusoff S.M., Zulperi Z.M., Hassim H.A., Zamri-Saad M., Amal M.N.A., Salleh A., Mohamad A., Yie L.J., Ina-Salwany M.Y. (2021). Immuno-protective efficiency of feed-based whole-cell inactivated bivalent vaccine against Streptococcus and Aeromonas infections in red hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus). Fish Shellfish Immunol., 113:162–175.
  76. Monir M.S., Yusoff S.M., Zulperi Z.M., Hassim H.A., Mohamad A., Ngoo M.S.M.H., Ina-Salwany M.Y. (2020). Haemato-immunological responses and effectiveness of feed-based bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila infections in hybrid red tilapia (Oreochromis mossambicus × O. niloticus). BMC Vet. Res., 16:1–14.
  77. Muktar Y., Tesfaye S., Tesfaye B. (2016). Present status and future prospects of fish vaccination: a review. J. Vet. Sci. Technol., 7:299.
  78. Muñoz-Atienza E., Díaz-Rosales P., Tafalla C. (2021). Systemic and mucosal B and T cell responses upon mucosal vaccination of teleost fish. Front. Immunol., 11:622377.
  79. Mutoloki S., Munang’andu H.M., Evensen Ø. (2015). Oral vaccination of fish–antigen preparations, uptake, and immune induction. Front. Immunol., 6:519.
  80. Nakanishi T., Kiryu I., Ototake M. (2002). Development of a new vaccine delivery method for fish: percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine., 20:3764–3769.
  81. Nakanishi T., Shibasaki Y., Matsuura Y. (2015). T cells in fish. Biology., 4:640–663.
  82. Nasr-Eldahan S., Attia Shreadah M., Maher A.M., El-Sayed Ali T., Nabil-Adam A. (2024). New vaccination approach using formalin-killed Streptococcus pyogenes vaccine on the liver of Oreochromis niloticus fingerlings. Sci. Rep., 14:18341.
  83. Noonan B., Enzmann P.J., Trust T.J. (1995). Recombinant infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus glycoprotein epitopes expressed in Aeromonas salmonicida induce protective immunity in rainbow trout (Oncorhynchus mykiss). Appl. Environ. Microbiol., 61:3586–3591.
  84. Okeke E.S., Chukwudozie K.I., Nyaruaba R., Ita R.E., Oladipo A., Ejeromedoghene O., Atakpa E.O., Agu C.V., Okoye C.O. (2022). Antibiotic resistance in aquaculture and aquatic organisms: a review of current nanotechnology applications for sustainable management. Environ. Sci. Pollut. Res., 29:69241–69274.
  85. Okoye C.O., Nyaruaba R., Ita R.E., Okon S.U., Addey C.I., Ebido C.C., Opabunmi A.O., Okeke E.S., Chukwudozie K.I. (2022). Antibiotic resistance in the aquatic environment: analytical techniques and interactive impact of emerging contaminants. Environ. Toxicol. Pharmacol., 96:103995.
  86. Osman K.M., Mohamed L.A., Rahman E.H.A., Soliman W.S. (2009). Trials for vaccination of Tilapia fish against Aeromonas and Pseudomonas infections using monovalent, bivalent and polyvalent vaccines. World J. Fish Mar. Sci., 1:297–304.
  87. Padrós F., Caggiano M., Toffan A., Constenla M., Zarza C., Ciulli S. (2022). Integrated management strategies for viral nervous necrosis (VNN) disease control in marine fish farming in the Mediterranean. Pathogens., 11:330.
  88. Papadopoulou A., Monaghan S.J., Bagwell N., Alves M.T., Verner-Jeffreys D., Wallis T., Davie A., Adams A., Migaud H. (2022). Efficacy testing of an immersion vaccine against Aeromonas salmonicida and immunocompetence in ballan wrasse (Labrus bergylta, Ascanius). Fish Shellfish Immunol., 121:505–515.
  89. Parra D., Reyes-Lopez F.E., Tort L. (2015). Mucosal immunity and B cells in teleosts: effect of vaccination and stress. Front. Immunol., 6:354.
  90. Pereira W.A., Mendonça C.M.N., Urquiza A.V., Marteinsson V.Þ., LeBlanc J.G., Cotter P.D., Villalobos E.F., Romero J., Oliveira R.P.S. (2022). Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms., 10:1705.
  91. Queiróz G.A., Silva T.M.F., Leal C.A.G. (2024). Duration of protection and humoral immune response in Nile tilapia (Oreochromis niloticus L.) vaccinated against Streptococcus agalactiae. Animals., 14:1744.
  92. Radhakrishnan A., Vaseeharan B., Ramasamy P., Jeyachandran S. (2023). Oral vaccination for sustainable disease prevention in aquaculture—An encapsulation approach. Aquacult. Int., 31:867–891.
  93. Rahman M.M., Rahman M.A., Hossain M.T., Siddique M.P., Haque M.E., Khasruzzaman A.K.M., Islam M.A. (2022). Efficacy of bi-valent whole cell inactivated bacterial vaccine against Motile Aeromonas Septicemia (MAS) in cultured catfishes (Heteropneustes fossilis, Clarias batrachus and pangasius pangasius) in Bangladesh. Saudi J. Biol. Sci., 29:3881–3889.
  94. Romalde J.L., Luzardo-Alvárez A., Ravelo C., Toranzo A.E., Blanco-Méndez J. (2004). Oral immunization using alginate microparticles as a useful strategy for booster vaccination against fish lactoccocosis. Aquaculture, 236:119–129.
  95. Rauta P.R., Nayak B., Das S. (2012). Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol. Lett., 148:23–33.
  96. Schulz P., Terech-Majewska E., Siwicki A.K., Kazuń B., Demska-Zakęś K., Rożyński M., Zakęś Z. (2020). Effect of different routes of vaccination against Aeromonas salmonicida on rearing indicators and survival after an experimental challenge of Pikeperch (Sander lucioperca) in controlled rearing. Vaccines., 8:476.
  97. Shah T., Baloch Z., Shah Z., Cui X., Xia X. (2021). The intestinal microbiota: impacts of antibiotics therapy, colonization resistance, and diseases. Int. J. Mol. Sci., 22:6597.
  98. Shoemaker C.A., Klesius P.H., Evans J.J., Arias C.R. (2009). Use of modified live vaccines in aquaculture. J. World Aquacult. Soc., 40:573–585.
  99. Shoemaker C.A., LaFrentz B.R., Klesius P.H. (2012). Bivalent vaccination of sex reversed hybrid tilapia against Streptococcus iniae and Vibrio vulnificus. Aquaculture, 354:45–49.
  100. Shoemaker C.A., Mohammed H.H., Bader T.J., Peatman E., Beck B.H. (2018). Immersion vaccination with an inactivated virulent Aeromonas hydrophila bacterin protects hybrid catfish (Ictalurus punctatus × Ictalurus furcatus) from motile Aeromonas septicemia. Fish Shellfish Immunol., 82:239–242.
  101. Silva B.C., Martins M.L., Jatobá A., Buglione Neto C.C., Vieira F.N., Pereira G.V., Jerônimo G.T., Seiffert W.Q., Mouriño J.L.P. (2009). Hematological and immunological responses of Nile tilapia after polyvalent vaccine administration by different routes. Pesq. Vet. Bras., 29:874–880.
  102. Soto E., Brown N., Gardenfors Z.O., Yount S., Revan F., Francis S., Kearney M.T., Camus A. (2014). Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia. Fish Shellfish Immunol., 41:593–599.
  103. Sotomayor-Gerding D., Troncoso J.M., Pino A., Almendras F., Diaz M.R. (2020). Assessing the immune response of Atlantic salmon (Salmo salar) after the oral intake of alginate-encapsulated piscirickettsia salmonis antigens. Vaccines., 8:450.
  104. Spickler A.R., Roth J.A. (2003). Adjuvants in veterinary vaccines: modes of action and adverse effects. J. Vet. Intern. Med., 17:273–281.
  105. Su F.-J., Chen M.-M. (2021). Protective efficacy of novel oral biofilm vaccines against Lactococcus garvieae infection in mullet, Mugil cephalus. Vaccines., 9:844.
  106. Su L., Guo H., Guo B., Yi J., Yang Z., Zhou S., Xiu Y. (2023). Efficacy of bivalent vaccine against Aeromonas salmonicida and Edwardsiella tarda infections in turbot. Fish Shellfish Immunol., 108837.
  107. Sudheesh P.S., Cain K.D. (2016). Optimization of efficacy of a live attenuated Flavobacterium psychrophilum immersion vaccine. Fish Shellfish Immunol., 56:169–180.
  108. Sudheesh P.S., Cain K.D. (2017). Prospects and challenges of developing and commercializing immersion vaccines for aquaculture. Int. Biol. Rev., 1.1.
  109. Sugiani D., Nafiqoh N., Novita H., Sumiati T., Andriyanto S., Taukhid T., Lusiastuti A.M. (2021). Safety and efficacy test to immersion vaccine against Streptococcus agalactiae and Aeromonas hydrophila for Tilapia (Oreochromis niloticus). E3S Web Conf., 322:2004.
  110. Tammas I., Bitchava K., Gelasakis A.I. (2024). Transforming aquaculture through vaccination: A review on recent developments and milestones. Vaccines., 12:732.
  111. Thanasaksiri K., Fukuda K., Takano R., Wongtavatchai J., Hanggono B., AK U.K. (2024). Efficacy of a commercial vaccine PISCIVACTM Irido Si against iridoviral disease and streptococcosis in Asian seabass (Lates calcarifer). Aquacult. Int., 1–13.
  112. Thanasaksiri K., Fukuda K., Tsubone S., Miyadai H., Murakami T., Murakami A., Takano R. (2018). Efficacy of a bivalent inactivated vaccine against red seabream iridovirus and Streptococcus iniae in red seabream, Pagrus major. Aquaculture., 492:132–136.
  113. Thim H.L., Villoing S., McLoughlin M., Christie K.E., Grove S., Frost P., Jørgensen J.B. (2014). Vaccine adjuvants in fish vaccines make a difference: comparing three adjuvants (Montanide ISA763A oil, CpG/Poly I:C combo and VHSV glycoprotein) alone or in combination formulated with an inactivated whole salmonid alphavirus antigen. Vaccines., 2:228–251.
  114. Thinh N.H., Kuo T.Y., Hung L.T., Loc T.H., Chen S.C., Evensen Ø., Schuurman H.J. (2009). Combined immersion and oral vaccination of Vietnamese catfish (Pangasianodon hypophthalmus) confers protection against mortality caused by Edwardsiella ictaluri. Fish Shellfish Immunol., 27:773–776.
  115. Tizard I. (1999). Grease, anthraxgate, and kennel cough: a revisionist history of early veterinary vaccines. Adv. Vet. Med., 41:7–24.
  116. Tlaxca J.L., Ellis S., Remmele R.L. Jr. (2015). Live attenuated and inactivated viral vaccine formulation and nasal delivery: potential and challenges. Adv. Drug Deliv. Rev., 93:56–78.
  117. Tobar I., Arancibia S., Torres C., Vera V., Soto P., Carrasco C., Alvarado M., Neira E., Arcos S., Tobar J.A. (2015). Successive oral immunizations against Piscirickettsia salmonis and infectious salmon anemia virus are required to maintain a long-term protection in farmed salmonids. Front. Immunol., 6:244.
  118. Tobar J.A., Jerez S., Caruffo M., Bravo C., Contreras F., Bucarey S.A., Harel M. (2011). Oral vaccination of Atlantic salmon (Salmo salar) against salmonid rickettsial septicaemia. Vaccine, 29:2336–2340.
  119. Triet T.H., Tinh B.T.T., Hau L.V., Huong T.V., Binh N.-Q. (2019). Development and potential use of an Edwardsiella ictaluri wzz mutant as a live attenuated vaccine against enteric septicemia in Pangasius hypophthalmus (Tra catfish). Fish Shellfish Immunol., 87:87–95.
  120. Tumree P., Bunnoy A., Tang X., Srisapoome P. (2024). Efficacy of whole-cell-based monovalent and bivalent vaccines against Streptococcus iniae and Flavobacterium covae in fingerling Asian seabass (Lates calcarifer). Fish Shellfish Immunol., 144:109269.
  121. Vakharia V.N. (2005). Sub-unit vaccine for infectious pancreatic necrosis virus. Google Pat.
  122. Villumsen K.R., Neumann L., Ohtani M., Strøm H.K., Raida M.K. (2014). Oral and anal vaccination confers full protection against enteric redmouth disease (ERM) in rainbow trout. PLoS One, 9:e93845.
  123. Vinay T.N., Bedekar M.K. (2022). Methods of vaccine delivery. In Fish Immune System and Vaccines (pp.217–230).
  124. Vinh N.T., Dong H.T., Lan N.G.T., Sangsuriya P., Salin K.R., Chatchaiphan S., Senapin S. (2023). Immunological response of 35 and 42 days old Asian seabass (Lates calcarifer, Bloch 1790) fry following immersion immunization with Streptococcus iniae heat-killed vaccine. Fish Shellfish Immunol., 138:108802.
  125. Vishweshwaraiah Y.L., Dokholyan N.V. (2022). Toward rational vaccine engineering. Adv. Drug Deliv. Rev., 183:114142.
  126. Wang B., Thompson K.D., Wangkahart E., Yamkasem J., Bondad‐Reantaso M.G., Tattiyapong P., Jian J., Surachetpong W. (2023). Strategies to enhance tilapia immunity to improve their health in aquaculture. Rev. Aquacult., 15:41–56.
  127. Wang C., Hu Y., Sun B., Chi H., Li J., Sun L. (2013). Environmental isolates P1SW and V3SW as a bivalent vaccine induce effective cross-protection against Edwardsiella tarda and Vibrio anguillarum. Dis. Aquat. Org., 103:45–53.
  128. Wang E., Wang X., Wang K., He J., Zhu L., He Y., Chen D., Ouyang P., Geng Y., Huang X. (2018). Preparation, characterization and evaluation of the immune effect of alginate/chitosan composite microspheres encapsulating recombinant protein of Streptococcus iniae designed for fish oral vaccination. Fish Shellfish Immunol., 73:262–271.
  129. Wise D.J., Greenway T.E., Byars T.S., Griffin M.J., Khoo L.H. (2015). Oral vaccination of channel catfish against enteric septicemia of catfish using a live attenuated Edwardsiella ictaluri isolate. J. Aquat. Anim. Health., 27:135–143.
  130. Xiao J., Chen T., Liu B., Yang W., Wang Q., Qu J., Zhang Y. (2013). Edwardsiella tarda mutant disrupted in type III secretion system and chorismic acid synthesis and cured of a plasmid as a live attenuated vaccine in turbot. Fish Shellfish Immunol., 35:632–641.
  131. Yao Y.Y., Chen D.D., Cui Z.W., Zhang X.Y., Zhou Y.Y., Guo X., Zhang Y.A. (2019). Oral vaccination of tilapia against Streptococcus agalactiae using Bacillus subtilis spores expressing Sip. Fish Shellfish Immunol., 86:999–1008.
  132. Yu Y., Wang Q., Huang Z., Ding L., Xu Z. (2020). Immunoglobulins, mucosal immunity and vaccination in teleost fish. Front. Immunol., 11:567941.
  133. Yun S., Giri S.S., Kim H.J., Kim S.G., Kim S.W., Kang J.W., Han S.J., Kwon J., Oh W.T., Chi C. (2019). Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach. Fish Shellfish Immunol., 91:12–18.
  134. Zhang D.-X., Kang Y.-H., Chen L., Siddiqui S.A., Wang C.-F., Qian A.-D., Shan X.-F. (2018). Oral immunization with recombinant Lactobacillus casei expressing OmpAI confers protection against Aeromonas veronii challenge in common carp, Cyprinus carpio. Fish Shellfish Immunol., 72:552–563.
  135. Zhang H., Chen M., Xu Y., Xu G., Chen J., Wang Y., Kang Y., Shan X., Kong L., Ma H. (2020). An effective live attenuated vaccine against Aeromonas veronii infection in the loach (Misgurnus anguillicaudatus). Fish Shellfish Immunol., 104:269–278.
  136. Zhang J., Hu Y., Sun Q., Li X., Sun L. (2021). An inactivated bivalent vaccine effectively protects turbot (Scophthalmus maximus) against Vibrio anguillarum and Vibrio harveyi infection. Aquaculture., 544:737158.
  137. Zhang M., Zhang T., He Y., Cui H., Li H., Xu Z., Ding Z. (2023). Immunogenicity and protective efficacy of OmpA subunit vaccine against Aeromonas hydrophila infection in Megalobrama amblycephala: An effective alternative to the inactivated vaccine. Front. Immunol., 14:1133742.
  138. Zhu L., Yang Q., Huang L., Wang K., Wang X., Chen D., Geng Y., Huang X., Ouyang P., Lai W. (2017). Effectivity of oral recombinant DNA vaccine against Streptococcus agalactiae in Nile tilapia. Dev. Comp. Immunol., 77: 77–87.
DOI: https://doi.org/10.2478/aoas-2025-0101 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Jun 3, 2025
Accepted on: Sep 11, 2025
Published on: Oct 16, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Majid Khanzadeh, Seyed Hossein Hoseinifar, Mohammad Mazandarani, Mohd Zamri-Saad, Maryam Dadar, Babak Beikzadeh, Hien Van Doan, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT