Have a personal or library account? Click to login
Assessment of the possibility of replacing imported protein sources with alternative domestic protein feeds in the feeding of fattener pigs in terms of their fattening, slaughter and economic value Cover

Assessment of the possibility of replacing imported protein sources with alternative domestic protein feeds in the feeding of fattener pigs in terms of their fattening, slaughter and economic value

Open Access
|Aug 2025

References

  1. Anestis V., Papanastasiou D. K., Bartzanas T., Giannenas I., Skoufos I., Kittas C. (2020). Effect of a dietary modification for fattening pigs on the environmental performance of commercial pig production in Greece. Sustain. Prod. Consum., 22: 162–176. https://doi.org/10.1016/j.spc.2020.03.002.
  2. Auzins A., Krievina A., Leimane I. (2021). Modelling of locally grown plant protein costs for pig feeding. Eng. Rural Dev., 20: 1304–1311. DOI: 10.22616/ERDev.2021.20.TF288.
  3. Babicz M., Szyndler‐Nędza M., Skrzypczak E., Kasprzyk, A. (2016). Reproductive performance of native Pulawska and high productivity Polish landrace sows in the context of stress during the period of early pregnancy. Reprod. Domest. Anim., 51(1): 91-97. DOI: 10.1111/rda.12650.
  4. Blanchard P. J., Ellis M., Warkup C. C., Hardy B., Chadwick J. P., Deans G. A. (1999). The influence of rate of lean and fat tissue development on pork eating quality. Anim. Sci., 68(3): 477-485. https://doi.org/10.1017/S1357729800050487.
  5. Čandek-Potokar M., Lebret B., Gispert M., Font-i-Furnols M. (2024). Challenges and future perspectives for the European grading of pig carcasses–A quality view. Meat Sci., 208: 109390. https://doi.org/10.1016/j.meatsci.2023.109390.
  6. Čandek-Potokar M., Nieto R. (2019). European local pig breeds - diversity and performance. A study of project TREASURE. London, United Kingdom, IntechOpen. https://doi.org/10.5772/intechopen.83749.
  7. Carellos D. D. C., Lima J. A. D. F., Fialho E. T., Freitas R. T. F. D., Silva H. O., Branco P. A. C., de Souza Z. A., Vieira Neto, J. (2005). Evaluation of sunflower meal on growth and carcass traits of finishing pigs. Ciênc. Agrotec., 29: 208–215. DOI: 10.1590/S1413-70542005000100026.
  8. Cheng H., Liu X., Xiao Q., Zhang F., Liu N., Tang L., Wang J., Ma X., Tan B., Chen, J., Jiang X. (2022). Rapeseed meal and its application in pig diet: a review. Agriculture, 12(6): 849. https://doi.org/10.3390/agriculture12060849.
  9. Cortamira O., Gallego A., Kim, S. W. (2000). Evaluation of twice decorticated sunflower meal as a protein source compared with soybean meal in pig diets. Asian-Australas. J. Anim. Sci., 13(9): 1296-1303. DOI: 10.5713/ajas.2000.1296.
  10. Czech A., Klimiuk K., Sembratowicz, I. (2023). The effect of thyme herb in diets for fattening pigs on their growth performance and health. Plos one, 18(10): e0291054. https://doi.org/10.1371/journal.pone.0291054.
  11. Davison J. (2010). GM plants: Science, politics and EC regulations. Plant Sci., 178 (2): 94–98. https://doi.org/10.1016/j.plantsci.2009.12.005.
  12. Davison J., Ammann K. (2017). New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops Food, 8 (1): 13–34. DOI: 10.1080/21645698.2017.1289305.
  13. de Morais Oliveira V. R., de Arruda A. M. V., Silva L. N. S., de Souza Jr J. B. F., de Queiroz J. P. A. F., da Silva Melo A., Holanda, J. S. (2016). Sunflower meal as a nutritional and economically viable substitute for soybean meal in diets for free-range laying hens. Anim. Feed Sci. Technol., 220: 103–108. DOI: 10.1080/00071660600963511.
  14. d’Souza D. N., Pethick D. W., Dunshea F. R., Suster D., Pluske J. R., Mullan B. P. (2004). The pattern of fat and lean muscle tissue deposition differs in the different pork primal cuts of female pigs during the finisher growth phase. Livest. Prod. Sci., 91(1–2): 1–8. https://doi.org/10.1016/j.livprodsci.2004.04.005.
  15. European Union. Directive 2010/63/EU of the European Parliament 263 and of the Council 264 of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Off. J. Eur. Union 2010, L54, 33–79.
  16. Florou-Paneri P., Christaki E., Giannenas I., Bonos E., Skoufos I., Tsinas A.,Tzora A., Peng, J. (2014). Alternative protein sources to soybean meal in pig diets. J. Food Agric. Environ., 12: 655-660. DOI: 10.1234/4.2014.5214.
  17. Grela E. R., Czech A. (2019). Alternative forage for genetically modified soybean in animal feeding (in Polish). Wiad. Zootech., 57(2): 66–77.
  18. Grela E. R., Świątkiewicz M., Florek M., Wojtaszewska I. (2020). Impact of milk thistle (Silybum marianum L.) seeds in fattener diets on pig performance and carcass traits and fatty acid profile and cholesterol of meat, backfat and liver. Livest. Sci., 239: 104180. DOI: 10.1016/j.livsci.2020.104180.
  19. Hanczakowska E., Księżak J., Świątkiewicz M. (2018). Efficiency of pea seeds in sow, piglet and fattener feeding. Anim. Prod. Sci., 59 (2): 304–313. https://doi.org/10.1071/AN17487.
  20. Hanczakowska E., Swiatkiewicz,M. (2014). Legume seeds and rapeseed press cake as replacers of soybean meal in feed for fattening pigs. Ann. Anim. Sci., 14(4): 921-934. https://doi.org/10.2478/aoas-2014-0068.
  21. Halle I., Schöne, F. (2013). Influence of rapeseed cake, linseed cake and hemp seed cake on laying performance of hens and fatty acid composition of egg yolk. J. Verbraucherschutz Lebensmittelsicher, 8: 185–193. DOI: 10.1007/s00003-013-0822-3.
  22. Karlsson L., Finell M., Martinsson, K. (2010). Effects of increasing amounts of hempseed cake in the diet of dairy cows on the production and composition of milk. Animal, 4: 1854–1860. https://doi.org/10.1017/S1751731110001254.
  23. Kasula R., Solis F., Shaffer B., Connett F., Barrett C., Cocker R., Willinghan E. (2021). Characterization of the nutritional and safety properties of hemp seed cake as animal feed ingredient. Int. J. Livest. Prod., 12(2): 53–63. DOI: 10.5897/IJLP2020.0750.
  24. Klir Ž., Novoselec J., Antunović Z. (2019). An overview on the use of hemp (Cannabis sativa L.) in animal nutrition. Poljoprivreda, 25(2): 52–61. https://doi.org/10.18047/poljo.25.2.8.
  25. Knecht D., Duziński K. (2016). The effect of sex, carcass mass, back fat thickness and lean meat content on pork ham and loin characteristics. Arch. Anim. Breed, 59(1): 51-57. https://doi.org/10.5194/aab-59-51-2016.
  26. Komlenić M., Margeta V., Kušec I. D., Gvozdanovic K., Margeta P., Kušec G. (2018). Carcass composition and meat quality of pigs from different pork chains in the production of Baranjski kulen (PGI). Arch. Zootec., 1: 209–212. https://doi.org/10.3390/pr10020370.
  27. Kušec G., Komlenić M., Gvozdanović K., Sili V., Krvavica M., Radišić Ž., Kušec, I. D. (2022). Carcass composition and physicochemical characteristics of meat from pork chains based on native and hybrid pigs. Processes, 10(2): 370. https://doi.org/10.3390/pr10020370.
  28. Latimer G. W. (2019). Editor. The official methods of analysis SM (OMA). AOAC International. Rockville, Maryland, USA.21 th ed., 2500 pp.
  29. Lebret B., Ferchaud S., Poissonnet A., Prunier A. (2024). Organic rearing of non-castrated male pigs: welfare indicators, carcass traits, pork quality and boar taint in Duroc and Pietrain crossbreds. Animal, 18(10): 101316. https://doi.org/10.1016/j.animal.2024.101316.
  30. Lim Y., Park Y., Kim G., Kim J., Seo J., Lee J., Choi J. (2024). Correlation analysis of primal cuts weight, fat contents, and auction prices in Landrace×Yorkshire×Duroc pig carcasses by VCS2000. J Anim. Sci. Technol., 66(4): 834-845. DOI: 10.5187/jast.2023.e78.
  31. Lourenco J. M., Froetschel M. A., Segers J. R., Tucker J. J., Stewart Jr R. L. (2017). Utilization of canola and sunflower meals as replacements for soybean meal in a corn silage-based stocker system. Transl. Anim. Sci., 1(4): 592–598. https://doi.org/10.2527/tas2017.0068.
  32. Metz J. L., Bryan E. E., Barkley K. E., Richey Guthrie K., Remole H. M., Shirey D. C., Chen X., Jallaq K., Harsh, B. (2024). Pork ham and belly processing traits with increasing carcass weight. Meat Muscle Biol., 8(1): 18181, 1-10. doi: https://doi.org/10.22175/mmb.18181.
  33. Mas G., Llavall M., Coll D., Roca R., Díaz I., Oliver M. A., Gispert M., Realini C. E. (2011). Effect of an elevated monounsaturated fat diet on pork carcass and meat quality traits and tissue fatty acid composition from York-crossed barrows and gilts. Meat Sci., 89(4): 419–425. DOI: 10.1016/j.meatsci.2011.05.011.
  34. OJ L 266 15.01.2015 – Act of 15 January 2015 on the protection of animals used for scientific purposes. Warsaw, Poland, Chancellery of the Parliament, pp. 1–49.
  35. OJ L 3, 5.1.2005 – Council Regulation (EC) No 1/2005 of 22 December 2004 on the protection of animals during transport and related operations and amending Directives 64/432/EEC and 93/119/EC and Regulation (EC) No 1255/97. Brussels, Belgium. Off. J. Eur. Union, pp. 1–44.
  36. OJ L 56/344, 15.2.2010 – Ordinance of the Minister of Agriculture and Rural Development of February 15, 2010 on the requirements and procedures for maintaining livestock species for which protection standards have been laid down in European Union provisions. Warsaw, Poland, Ministry of Agriculture and Rural Development, pp. 5020–5027.
  37. Olkiewicz M., Moch P. (2011). The contents of the main raw material components quantified in the selected basic elements and half carcass pork basic composition (in Polish). Post. Nauk. Technol. Przem. Rolno-Spoż., 66(1): 67–80.
  38. Pandey S., Kim S., Kim E.S., Keum G.B., Doo H., Kwak J., Ryu S., Choi Y., Kang J., Kim H., Chae Y., Seol K.H., Kang S.M., Kim Y., Seong P.N., Bae I.S., Cho S.H., Jung S., Kim H.B. (2024). Exploring the multifaceted factors affecting pork meat quality. J Anim Sci Technol., 66(5): 863-875. DOI: 10.5187/jast.2024.e56.
  39. Pierozan, C. R., Agostini, P. D. S., Gasa, J., Novais, A. K., Dias, C. P., Santos, R. S., Pereira Jr M., Nagi J. G., Alves J. B., Silva C. A. (2016). Factors affecting the daily feed intake and feed conversion ratio of pigs in grow-finishing units: the case of a company. Porc. Health Manag., 2(7): 1–8. DOI: 10.1186/s40813-016-0023-4.
  40. Povod M., Mykhalko O., Povoznikov M., Gutyj B., Koberniuk V., Shuplyk V., Ievstafiieva Y., Buchkovska V. (2022). Efficiency of using high-protein sunflower meal instead of soybean meal in feeding of growing piglets. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev., 22 (4): 596–602. DOI: https://doi.org/10.32845/bsnau.lvst.2022.4.5.
  41. Presto M. H., Lyberg K., Lindberg J. E. (2011). Digestibility of amino acids in organically cultivated white-flowering faba bean and cake from cold-pressed rapeseed, linseed and hemp seed in growing pigs. Arch. Anim. Nutr., 65(1): 21–33. https://doi.org/10.1080/1745039X.2010.534897.
  42. Pulkrábek J., Pavlík J., Valis L., Vítek M. (2006). Pig carcass quality in relation to carcass lean meat proportion. Czech J. Anim. Sci., 51(1): 18. DOI: 10.17221/3904-CJAS.
  43. Rutkowski A., Zaworska-Zakrzewska A. (2020). Editors. Recommendations for the use of domestic plant protein feeds in pig and poultry feeding (in Polish). APRA Press, Bydgoszcz, Poland, 330 pp.
  44. Scramlin S. M., Carr S. N., Parks C. W., Fernandez-Duen˜ as D. M., Leick,C. M., McKeith F. K., Killefer J. (2008) . Effect of ractopamine level, gender, and duration of ractopamine on belly and bacon quality traits. Meat Sci., 80: 1218–1221. https://doi.org/10.1016/j.meatsci.2008.03.004.
  45. Sieradzki Z., Mazur M., Król B., Kwiatek K. (2018). The use of Genetically modified feeds in relation to three production models - organic, traditional and GMO-free (in Polish). Pasze Przem., 27 (2): 43–47.
  46. Soladoye P. O., Shand P. J., Aalhus J. L., Gariépy C., Juárez M. (2015). Pork belly quality, bacon properties and recent consumer trends. Can. J. Anim. Sci., 95(3): 325–340. DOI: 10.4141/CJAS-2014-121.
  47. Świątkiewicz M. (2020) Research on the nutritional value of domestic protein sources and their usefulness in pig nutrition (in Polish). In: Animal breeding over 70 years - problems and challenges Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, National Research Institute of Animal Production Press, Krakow, Poland, pp. 34-53.
  48. Świątkiewicz M., Zimniewska M., Różańska W., Gryszczyńska A., Kołodziej J., Młocek, W., Czech A. (2022). Assessment of flax and hemp fibres in terms of their impact on the growth performance and health status of weaned piglets. Animal, 16(12): 100677. https://doi.org/10.1016/j.animal.2022.100677.
  49. Szulc K., Nowaczewski S., Skrzypczak E., Szyndler-Nędza M., Babicz M. (2024). Quality and processability of meat in polish native pigs–a review. Ann. Anim. Sci., 24(4): 1107-1122. https://doi.org/10.2478/aoas-2024-0027.
  50. Szyndler-Nędza M., Świątkiewicz M., Żak G., Tyra M., Mucha A., Małopolska M., Piórkowska K., Szulc K., Skrzypczak E. (2024). Effect of different protein sources on the meat quality of Złotnicka Spotted pigs with particular emphasis of slaughter body weight. Ann. Anim. Sci., 25 (1): 293-304. https://doi.org/10.2478/aoas-2024-0083.
  51. Szyndler-Nedza M., Tyra M. (2023). Effect of fattening and slaughter value of Puławska gilts on their lifetime piglet production. Anim. Sci. Genet., 19(1): 55–67. DOI: 10.5604/01.3001.0016.3159.
  52. Teterycz D., Sobota A., Przygodzka D., Łysakowska, P. (2021). Hemp seed (Cannabis sativa L.) enriched pasta: Physicochemical properties and quality evaluation. Plos one, 16(3): e0248790. https://doi.org/10.1371/journal.pone.0248790.
  53. Tyra M. (2024). Results of pigs tested at pig testing stations. In: Report on pig breeding in Poland. National Research Institute of Animal Production Press,, Kraków, Poland, XLII: pp. 48-65.
  54. Tyra M., Eckert R. (2021). Results of pigs tested at pig testing stations In: Report on pig breeding in Poland. National Research Institute of Animal Production Press,, Kraków, Poland, XXXI: pp. 47-64.
  55. Tyra M., Ropka-Molik K., Terman A., Piórkowska K., Oczkowicz M., Bereta A. (2013). Association between subcutaneous and intramuscular fat content in porcine ham and loin depending on age, breed and FABP3 and LEPR genes transcript abundance. Mol. Biol. Rep., 40: 2301-2308. DOI 10.1007/s11033-012-2311-7.
  56. Vasquez-Hidalgo M. A., Mellencamp M., Amodie D., Bohrer B. M., VanDeWeyer L., Vonnahme K. A. (2024). Evaluation of Improvest effects on production parameters of gilts from two different genetic sire lines. Transl. Anim. Sci., 8: 1-8. https://doi.org/10.1093/tas/txad144.
  57. White G. A., Smith L. A., Houdijk J. G. M., Homer D., Kyriazakis I.,Wiseman J. (2015). Replacement of soya bean meal with peas and faba beans in growing/finishing pig diets: Effect on performance, carcass composition and nutrient excretion. Anim. Feed Sci. Technol., 209: 202–210. DOI: 10.1016/j.anifeedsci.2015.08.005.
  58. Ying W. A. N. G., Ju-feng L. I. (2024). Effects of curcumin on growth performance, meat quality, and economic benefits of finishing pigs. Feed Res., 47(9): 49. DOI: 10.13557/j.cnki.issn1002-2813.2024.09.009.
  59. Zhang Y. (2024). Hemp seed meal as an alternative protein sourcein growing pigs diet: a pilot study. Master’s thesis. Cornell University in Ithaca, Nowy Jork, USA, 25 pp.
DOI: https://doi.org/10.2478/aoas-2025-0085 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Mar 11, 2025
Accepted on: Jul 21, 2025
Published on: Aug 29, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Kinga Kropiwiec-Domańska, Marek Babicz, Magdalena Szyndler-Nędza, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT