Have a personal or library account? Click to login
Investigation of methods to enhance the efficiency of canola meal use in pelleted calf starter mixtures and comparisons with other high-protein by-products Cover

Investigation of methods to enhance the efficiency of canola meal use in pelleted calf starter mixtures and comparisons with other high-protein by-products

Open Access
|Aug 2025

References

  1. Adewole D., Rogiewicz A., Dyck B., Nyachoti C., Slominski B. (2017). Standardized ileal digestible amino acid contents of canola meal from Canadian crushing plants for growing pigs. J. Anim. Sci., 95: 2670–2679.
  2. Ahmed A., Zulkifli I., Farjam A.S., Abdullah N., Liang J.B. (2014). Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens. Ital. J. Anim. Sci., 13: 3032.
  3. Berenti A.M., Yari M., Khalaji S., Hedayati M., Akbarian A., Yu P. (2021). Effect of extrusion of soybean meal on feed spectroscopic molecular structures and on performance, blood metabolites and nutrient digestibility of Holstein dairy calves. Anim. Biosci., 34: 855–866.
  4. Burakowska K., Górka P., Kent-Dennis C., Kowalski Z.M., Laarveld B., Penner G.B. (2020). Effect of heat-treated canola meal and glycerol inclusion on performance and gastrointestinal development of Holstein calves. J. Dairy Sci., 103: 7998–8019.
  5. Burakowska K., Górka P., Kowalski Z.M., Laarveld B., Penner G.B. 2016. Effect of canola meal heat treatment and glycerol inclusion in calf starter on GIT development. In: 5th EAAP, International Symposium on Energy and Protein Metabolism and Nutrition, Krakow, Poland. p 81–82.
  6. Burakowska K., Górka P., Penner G.B. (2021a). Effects of canola meal inclusion rate in starter mixtures for Holstein heifer calves on dry matter intake, average daily gain, ruminal fermentation, plasma metabolites, and total-tract digestibility. J. Dairy Sci., 104: 8736–8745.
  7. Burakowska K., Penner G.B., Korytkowski Ł., Flaga J., Kowalski Z.M., Górka P. (2021b). Canola meal or soybean meal as protein source and the effect of microencapsulated sodium butyrate supplementation in calf starter mixture. I. Performance, digestibility, and selected blood variables. J. Dairy Sci., 104: 6646–6662.
  8. Dennis T.S., Suarez-Mena F.X., Hill T.M., Quigley J.D., Schlotterbeck R.L., Lascano G.J. (2018). Short communication: Effect of replacing corn with beet pulp in a high concentrate diet fed to weaned Holstein calves on diet digestibility and growth. J. Dairy Sci., 101: 408–412.
  9. Donahue P.B., Schwab C.G., Quigley J.D., Hylton W.E. (1985). Methionine deficiency in early-weaned dairy calves fed pelleted rations based on corn and alfalfa or corn and soybean proteins. J. Dairy Sci., 68: 681–693.
  10. Echeverry-Munera J., Marti S., Steele M., Devant M., Martín-Tereso J., Leal L. (2024). 54. Interaction between colostrum and milk replacer supply on growth and gastrointestinal development of dairy surplus calves. Animal : an international journal of animal bioscience, 15: 59–60.
  11. Fischer A.J., Villot C., van Niekerk J.K., Yohe T.T., Renaud D.L., Steele M.A. (2019). Invited Review: Nutritional regulation of gut function in dairy calves: From colostrum to weaning. 35: 498–510.
  12. Gelsinger S.L., Coblentz W.K., Zanton G.I., Ogden R.K., Akins M.S. (2019). Ruminal in situ disappearance and whole-tract digestion of starter feeds in calves before, during, and after weaning. 102: 2196–2206.
  13. Gelsinger S.L., Coblentz W.K., Zanton G.I., Ogden R.K., Akins M.S. (2020). Physiological effects of starter-induced ruminal acidosis in calves before, during, and after weaning. J. Dairy Sci., 103: 2762–2772.
  14. Górka P., Milik J., Budziński W., Przybyło M., Kański J., Jankowiak T., Budzińska K. (2023). Effect of sodium butyrate, phytogenic compounds and egg yolk antibodies supplementation in calf milk replacer containing probiotic bacteria on farms feeding a mixture of surplus colostrum and transition milk to calves in their first days of life. Anim. Feed Sci. Technol., 302: 115675.
  15. Górka P., Penner G.B. (2020). Rapeseed and canola meal as protein sources in starter diets for calves: current knowledge and directions of future studies. Ank. Univ. Vet. Fak. Derg, 67: 313–321.
  16. Górka P., Śliwiński B., Flaga J., Wieczorek J., Godlewski M.M., Wierzchoś E., Zabielski R., Kowalski Z.M. (2017). Effect of butyrate infusion into the rumen on butyrate flow to the duodenum, selected gene expression in the duodenum epithelium, and nutrient digestion in sheep. J. Anim. Sci., 95: 2144–2155.
  17. Guilloteau P., Zabielski R., Blum J.W. (2009). Gastrointestinal tract and digestion in the young ruminant: ontogenesis, adaptations, consequences and manipulations. J. Physiol. Pharmacol., 60 (Suppl. 2): 37–46.
  18. Hadam D., Kański J., Burakowska K., Penner G.B., Kowalski Z.M., Górka P. (2016). Short communication: Effect of canola meal use as a protein source in a starter mixture on feeding behavior and performance of calves during the weaning transition. J. Dairy Sci., 99: 1247–1252.
  19. Heyer C.M.E., Wang L.F., Beltranena E., Zijlstra R.T. (2021). Nutrient digestibility of extruded canola meal in ileal-cannulated growing pigs and effects of its feeding on diet nutrient digestibility and growth performance in weaned pigs. J. Anim. Sci., 99: skab135.
  20. Hill T.M., Quigley J.D., Bateman H.G., II, Aldrich J.M., Schlotterbeck R.L. (2016). Source of carbohydrate and metabolizable lysine and methionine in the diet of recently weaned dairy calves on digestion and growth. J. Dairy Sci., 99: 2788–2796.
  21. Józefiak D., Ptak A., Kaczmarek S., Mackowiak P., Sassek M., Slominski B.A. (2010). Multi-carbohydrase and phytase supplementation improves growth performance and liver insulin receptor sensitivity in broiler chickens fed diets containing full-fat rapeseed. Poult. Sci., 89: 1939–1946.
  22. Kazemi-Bonchenari M., Khanaki H., Jafari A., Eghbali M., Poorhamdollah M., Ghaffari M.H. (2022). Milk feeding level and starter protein content: Effects on growth performance, blood metabolites, and urinary purine derivatives of Holstein dairy calves. J. Dairy Sci., 105: 1115–1130.
  23. Kazemi-Bonchenari M., Mirzaei M., Jahani-Moghadam M., Soltani A., Mahjoubi E., Patton R. (2016). Interactions between levels of heat-treated soybean meal and prilled fat on growth, rumen fermentation and blood metabolites of Holstein calves. J. Anim. Sci., 94: 4267–4275.
  24. Keady U., O’Doherty J. (2000). The effect of extrusion on the nutritive value of rapeseed meal for growing and finishing pigs. Irish J. Agr. Food Res., 39: 419–431.
  25. Kehoe S.I., Heinrichs A.J. 2004. Gastrointestinal development in dairy calves. In: T. P. Lyons and K. A. Jacques (eds.) Nutritional Biotechnology in the Feed and Food Industries, Proceedings of Alltech’s Twentietch Symposium. No. 2004. p 195–203. Nottingham University Press, Nottingham.
  26. Khorasani G.R., Sauer W.C., Ozimek L., Kennelly J.J. (1990). Digestion of soybean meal and canola meal protein and amino acids in the digestive tract of young ruminants. J. Anim Sci., 68: 3421–3428.
  27. Kiarie E., Romero L.F., Nyachoti C.M. (2013). The role of added feed enzymes in promoting gut health in swine and poultry. Nutr. Res. Rev., 26: 71–88.
  28. Laarman A.H., Sugino T., Oba M. (2012). Effects of starch content of calf starter on growth and rumen pH in Holstein calves during the weaning transition. J. Dairy Sci., 95: 4478–4487.
  29. Lalles J.P., Poncet C. (1990). Changes in ruminal and intestinal digestion during and after weaning in dairy calves fed concentrate diets containing pea or soya bean meal. 1. Digestion of organic matter and nitrogen. Livest. Prod. Sci., 24: 129–142.
  30. Lallés J.P., Toullec R., Paureau-Mirand P., Poncet C. (1990). Changes on ruminal and intestinal digestion during and after weaning in diary calves fed concentrate diets containing pea or soya bean meal. 2. Amino acid composition and flow of duodenal and ileal digestion, and blood levels of free amino acids. Livest. Prod. Sci., 24: 143–159.
  31. Le Huërou-Luron I., Guilloteau P., Wicker-Palaquart C., Chayvialle J.A., Burton J., Mouats A., Toullec R., Puigserver A. (1992a). Gastric and pancreatic enzyme activities and their relationship with some gut regulatory peptides during postnatal development and weaning in calves. J. Nutr., 122: 1434–1445.
  32. Le Huërou-Luron I., Guilloteau P., Wicker C., Mouats A., Chayvialle J.A., Bernard C., Burton J., Toullec R., Puigserver A. (1992b). Activity distribution of seven digestive enzymes along small intestine in calves during development and weaning. Dig. Dis. Sci., 37: 40–46.
  33. Leibholz J. (1975). The development of ruminant digestion in the calf. I. The digestion of barley and soya bean meal. Aust. J. Agric. Res., 26: 1081–1091.
  34. Leibholz J. (1978). The development of ruminant digestion in the calf. II. The digestion of barley and urea. Aust. J. Agric. Res., 29: 1293–1299.
  35. Maison T. 2013. Evaluation of the nutritional value of canola meal, 00-rapeseed meal, and 00-rapeseed expellers fed to pigs, University of Illinois, Urbana, Il, US.
  36. Martineau R., Ouellet D.R., Lapierre H. (2013). Feeding canola meal to dairy cows: A meta-analysis on lactational responses. J. Dairy Sci., 96: 1701–1714.
  37. Mejicanos G., Sanjayan N., Kim I.H., Nyachoti C.M. (2016). Recent advances in canola meal utilization in swine nutrition. J. Anim. Sci. Tech., 58: 7.
  38. Michelsen A.M., Otten N.D., Vestergaard M., Nielsen L.R., Nielsen B.H., Martin H.L., Capion N., Petersen M.B. (2025). Evaluation of passive immunity transfer in Danish dairy calves measured by enzyme-linked immunosorbent assay and Brix refractometer. 67: 15.
  39. Milik J., Górka P., Budzińska K., Kański J., Jankowiak T. (2023). Effect of supplementing sodium butyrate, phytogenic compounds and egg yolk antibodies in calf milk replacer containing probiotic bacteria on selected faecal bacteria in calves. J. Anim. Feed Sci., 32: 438–446.
  40. Miller-Cushon E.K., Montoro C., Ipharraguerre I.R., Bach A. (2014a). Dietary preference in dairy calves for feed ingredients high in energy and protein. J. Dairy Sci., 97: 1634–1644.
  41. Miller-Cushon E.K., Terré M., DeVries T.J., Bach A. (2014b). The effect of palatability of protein source on dietary selection in dairy calves. J. Dairy Sci., 97: 4444–4454.
  42. Niu Y., Rogiewicz A., Shi L., Patterson R., Slominski B.A. (2022). The effect of multi-carbohydrase preparations on non-starch polysaccharides degradation and growth performance of broiler chickens fed diets containing high inclusion level of canola meal. Anim. Feed Sci. Tech., 293: 115450.
  43. Quigley J.D., III, Schwab C.G., Hylton W.E. (1985). Development of rumen function in calves: nature of protien reaching the abomasum. J. Dairy Sci., 63: 694–702.
  44. Quigley J.D., Wolfe T.A., Elsasser T.H. (2006). Effects of additional milk replacer feeding on calf health, growth, and selected blood metabolites in calves. J. Dairy Sci., 89: 207–216.
  45. Rahimi A., Rafiee H. (2024). Performance of Holstein dairy calves fed starter diet with incremental vinasse proportion. Anim. Feed Sci. Tech., 308: 115874.
  46. Rey M., Enjalbert F., Combes S., Cauquil L., Bouchez O., Monteils V. (2014). Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J. Appl. Microbiol., 116: 245–257.
  47. Robinson P.H., DePeters E.J., Shinzato I., Sato H. (2006). Rumen lysine escape, rumen fermentation, and productivity of early lactation dairy cows fed free lysine. Anim. Feed Sci. Tech., 128: 31–41.
  48. Schingoethe D.J., Beardsley G.L., Muller L.D. (1974). Evaluation of commercial rapeseed meal and bronowski variety rapeseed meal in calf rations. J. Nutr., 104: 558–562.
  49. Stone J.B., Wood A.S. (1973). Rapeseed meal as a protein source in the starter concentrate for replacement calves. Can. J. Anim. Sci., 53: 327–332.
  50. Suarez-Mena F.X., Hill T.M., Heinrichs A.J., Bateman H.G., Aldrich J.M., Schlotterbeck R.L. (2011). Effects of including corn distillers dried grains with solubles in dairy calf feeds. J. Dairy Sci., 94: 3037–3044.
  51. Torres-Pitarch A., Hermans D., Manzanilla E.G., Bindelle J., Everaert N., Beckers Y., Torrallardona D., Bruggeman G., Gardiner G.E., Lawlor P.G. (2017). Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Anim. Feed Sci. Tech., 233: 145–159.
  52. Urie N.J., Lombard J.E., Shivley C.B., Kopral C.A., Adams A.E., Earleywine T.J., Olson J.D., Garry F.B. (2018). Preweaned heifer management on US dairy operations: Part I. Descriptive characteristics of preweaned heifer raising practices. J. Dairy Sci., 101: 9168–9184.
  53. van Niekerk J.K., Middeldorp M., Guan L.L., Steele M.A. (2021). Preweaning to postweaning rumen papillae structural growth, ruminal fermentation characteristics, and acute-phase proteins in calves. J. Dairy Sci., 104: 3632–3645.
  54. Veen W.A., Veling J., Van der Aar P.J. (1989). Growth of rearing calves in relation to lysine contents of milk replacer and calf starter and feeding frequency of milk replacer. Arch. Tierernahr., 39: 515–525.
  55. Wheeler E.E., Veira D.M., Stone J.B. (1980). Comparison of tower rapeseed meal and soybean meal as sources of protein in pelleted calf starter rations. Can J Anim Sci, 60: 93–97.
  56. Wilm J., Costa J.H.C., Neave H.W., Weary D.M., von Keyserlingk M.A.G. (2018). Technical note: Serum total protein and immunoglobulin G concentrations in neonatal dairy calves over the first 10 days of age. J. Dairy Sci.
  57. Xiao J.X., Chen T.Y., Peng R., Alugongo G.M., Yang H., Khan M.Z., Liu S., Ma Y.L., Wang J.J., Wang W., Wang Y.J., Li S.L., Cao Z.J. (2023). The age at first consumption of forage in calves and its effect on growth and rumination in the short- and long-term. J. Anim. Sci. Biotech., 14: 107.
DOI: https://doi.org/10.2478/aoas-2025-0074 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Dec 18, 2024
Accepted on: Jun 17, 2025
Published on: Aug 26, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Paweł Górka, Klaudia Krupa, Marcin Podżorski, Marcin Przybyło, Jarosław Kański, Zygmunt M. Kowalski, Adam Stępień, Katarzyna Burakowska, Gregory B. Penner, Anna Rogiewicz, Rob Patterson, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT