References
- Anders S., Pyl P.T. Huber W. (2015). HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics., 31: 166–169.
- Andrews S. (2010). FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed April 6, 2020.
- Beerts C., Suls M., Broeckx S.Y., Seys B., Vandenberghe A., Declercq J., Duchateau L., Vidal M.A. Spaas J.H. (2017). Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses. Front. Vet. Sci., 26: 158.
- Bellagamba B.C., Abreu B.R.R. De, Grivicich I., Markarian C.F., Chem E., Camassola M., Nardil N.B. Dihl R.R. (2016). Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro. Genet. Mol. Biol., 39: 129–134.
- Berebichez-Fridman R., Montero-Olvera P.R. (2018). Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 18; e264–e277.
- Bradford S.T., Nair S.S., Statham A.L., van Dijk S.J., Peters T.J., Anwar F., French H.J., von Martels J.Z.H., Sutcliffe B., Maddugoda M.P., Peranec M., Varinli H., Arnoldy R., Buckley M., Ross J.P., Zotenko E., Song J.Z., Stirzaker C., Bauer D.C., Qu, W., Swarbrick M.M., Lutgers H.L., Lord R.V., Samaras K., Molloy P.L., Clark S.J. (2019). Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Sci. Rep., 9: 9511.
- Branly T., Bertoni L., Contentin R., Rakic R., Gomez-Leduc T., Desancé M., Hervieu M., Legendre F., Jacquet S., Audigié F., Denoix J.M., Demoor M., Galéra P. (2017). Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Stem Cell Rev. Rep., 13: 611–630.
- Burk J., Wittenberg-Voges L., Schubert S., Horstmeier C., Brehm W., Geburek, F. (2023). Treatment of Naturally Occurring Tendon Disease with Allogeneic Multipotent Mesenchymal Stromal Cells: A Randomized, Controlled, Triple-Blinded Pilot Study in Horses. Cells, 12: 2513.
- Chappell V.A., Janesick A., Blumberg B., Fenton S.E. (2018). Tetrabromobisphenol-A Promotes Early Adipogenesis and Lipogenesis in 3T3-L1 Cells. Toxicol. Sci., 166: 332–344.
- Chen H., Tan X.N., Hu S., Liu R.Q., Peng L.H., Li Y.M., Wu P. (2021). Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Front. Cell Dev. Biol., 9: 664168.
- Choi J.R., Yong K.W., Nam H.Y. (2022). Current Status and Perspectives of Human Mesenchymal Stem Cell Therapy 2020. Stem Cells Int., 2022: 9801358.
- Conze P., Van Schie H.T.M., Weeren R. Van, Staszyk C., Conrad S., Skutella T., Hopster K., Rohn K., Stadler P., Geburek, F. (2014). Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions. Regen. Med., 9: 743–757.
- Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29: 15–21.
- Dodt M., Roehr J.T., Ahmed R., Dieterich C. (2012). FLEXBAR – Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms. Biology (Basel), 1: 895.
- Fan M., Geng N., Li X., Yin D., Yang Y., Jiang R., Chen C., Feng N., Liang L., Li X., Luo F., Qi, H., Tan Q., Xie Y., Guo F. (2022). IRE1α regulates the PTHrP-IHH feedback loop to orchestrate chondrocyte hypertrophy and cartilage mineralization. Genes Dis., 11: 464–478.
- Fletcher H.A., Pathan A.A., Berthoud T.K. et al. (2008). Boosting BCG vaccination with MVA85A down-regulates the immunoregulatory cytokine TGF-beta1. Vaccine, 26: 5269–5275.
- Gao J., Ding L., Xin Y., Li Y., He K., Su M., Hu R. (2023). Pax6-Induced Proliferation and Differentiation of Bone Marrow Mesenchymal Stem Cells Into Limbal Epithelial Stem Cells. Stem Cells Dev., 32: 410–421.
- Goh B.C., Singhal V., Herrera A.J., Tomlinson R.E., Kim S., Faugere M.C., Germain-Lee E.L., Clemens T.L., Lee S.J., Digirolamo D.J. (2017). Activin receptor type 2A (ACVR2A) functions directly in osteoblasts as a negative regulator of bone mass. J. Biol. Chem., 292: 13809–13822.
- Gong M., Yu B., Wang J., Wang Y., Liu M., Paul C., Millard R.W., Xiao D.S., Ashraf M., Xu M. (2017). Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget, 8: 45200–45212.
- Hilton M.J., Tu X., Cook J., Hu H., Long F. (2005). Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. Development, 132: 4339–4351.
- Hu Z.Q., Zhou S.L., Zhou Z.J., Bin L.C., Chen, E.B., Zhan H., Wang P.C., Dai Z., Zhou J., Fan J., Huang X.W. (2016). Overexpression of semaphorin 3A promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma after curative resection. Oncotarget, 7: 51733–51746.
- Jang Y., Jung H., Nam Y., Rim Y.A., Kim J., Jeong S.H., Ju J.H. (2016). Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adipose-derived stem cells via SOX9 upregulation. Stem Cell Res. Ther., 7: 1–10.
- Jiang Z., Derrick-Roberts A.L.K., Byers S. (2020). Altered IHH signaling contributes to reduced chondrocyte proliferation in the growth plate of MPS VII mice. Mol. Genet. Metab. Rep., 25: 100668.
- Kan I., Barhum Y., Melamed E., Offen D. (2011). Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice. Stem Cell Rev. Rep., 7: 404–412.
- Leung V.Y.L., Gao B., Leung K.K.H., Melhado I.G., Wynn S.L., Au T.Y.K., Dung N.W.F., Lau J.Y.B., Mak A.C.Y., Chan D., Cheah K.S.E. (2011). SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet., 7(11):e1002356.
- Li X., Zeng S., Chen L., Zhang Y., Li X., Zhang B., Su D., Du Q., Zhang J., Wang H., Zhong Z., Zhang J., Li P., Jiang A., Long K., Li M., Ge L. (2024). An intronic enhancer of Cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif., 57(3):e13552.
- Lim S.K., Khoo B.Y. (2021). An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy. Oncol. Lett., 22: 785.
- Lin Y., Qu L., Wu J., Pu M., Huang Y., Cao Y. (2023). Identification of Adipogenesis Subgroups and Immune Infiltration Characteristics in Diabetic Peripheral Neuropathy. J. Immunol. Res., 2023: 3673094.
- Lindsey R.C., Xing W., Pourteymoor S., Godwin C., Gow A., Mohan S. (2019). Novel Role for Claudin-11 in the Regulation of Osteoblasts via Modulation of ADAM10-Mediated Notch Signaling. J. Bone Miner. Res., 34: 1910–1922.
- Longhini A.L.F., Salazar T.E., Vieira C., Trinh T., Duan Y., Pay L.M., Calzi S.L., Losh M., Johnston N.A., Xie H., Kim M., Hunt R.J., Yoder M.C., Santoro D., McCarrel T.M., Grant M.B. (2019). Peripheral blood-derived mesenchymal stem cells demonstrate immunomodulatory potential for therapeutic use in horses. PLoS One, 14(3):e0212642.
- Love M.I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15: 550.
- Madsen M.S., Siersbæk R., Boergesen M., Nielsen R., Mandrup S. (2014). Peroxisome Proliferator-Activated Receptor γ and C/EBPα Synergistically Activate Key Metabolic Adipocyte Genes by Assisted Loading. Mol. Cell. Biol., 34:939.
- Marion N.W., Mao J.J. (2006). Mesenchymal stem cells and tissue engineering. Methods Enzymol., 420: 339–361.
- Matulewicz N., Stefanowicz M., Nikołajuk A., Karczewska-Kupczewska M. (2017). Markers of Adipogenesis, but Not Inflammation, in Adipose Tissue Are Independently Related to Insulin Sensitivity. J. Clin. Endocrinol. Metab., 102: 3040–3049.
- Mishra P.J., Mishra P.J., Humeniuk R., Medina D.J., Alexe G., Mesirov J.P., Ganesan S., Glod J.W., Banerjee D. (2008). Carcinoma Associated Fibroblast Like Differentiation of Human Mesenchymal Stem Cells. Cancer Res., 68: 4331.
- Miyazaki Y., Oda T., Inagaki Y., Kushige H., Saito Y., Mori N., Takayama Y., Kumagai Y., Mitsuyama T., Kida Y.S. (2021). Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Sci. Rep., 11: 4690.
- Murakami S., Kan M., McKeehan W.L., De Crombrugghe B. (2000). Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA, 97: 1113–1118.
- Nimitphong H., Park E., Lee M.J. (2020). Vitamin D regulation of adipogenesis and adipose tissue functions. Nutr. Res. Pract., 14: 553.
- Opiela J., Bartel Ż., Romanek J., Wieczorek J., Wilczek P. (2013). The quality of porcine mesenchymal stem cells and their osteo- and adipogenic cell derivatives – the level of proapoptotic BAD protein expression. Ann. Anim. Sci., 13: 753–763.
- Opiela J., Lipinski D., Romanek J., Juzwa W., Bochenek M., Wilczek P. (2016). MMP-2, TIMP-2, TAZ and MEF2a transcript expression in osteogenic and adipogenic differentiation of porcine mesenchymal stem cells. Annals Anim Sci., 16: 369–385.
- Pǎunescu V., Deak E., Herman D., Siska I.R., Tǎnasie G., Bunu C., Anghel S., Tatu C.A., Oprea T.I., Henschler R., Rüster B., Bistrian R., Seifried E. (2007). In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J. Cell. Mol. Med., 11: 502.
- Pill K., Hofmann S., Redl H., Holnthoner W. (2015). Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regen., 4: 8.
- Pittenger M.F., Dische D.E., Péault B.M., Phinney D.G., Hare J.M., Caplan A.I. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med., 4: 22.
- Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284: 143–147.
- Quevedo H.C., Hatzistergos K.E., Oskouei B.N., Feigenbaum G.S., Rodriguez J.E., Valdes D., Pattany P.M., Zambrano J.P., Hu Q., McNiece I., Heldman A.W., Hare J.M. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. USA, 106: 14022–14027.
- Ranera B., Lyahyai J., Romero A., Vázquez F.J., Remacha A.R., Bernal M.L., Zaragoza P., Rodellar C., Martín-Burriel I. (2011). Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet. Immunol. Immunopathol., 144: 147–154.
- Rentsch C., Hess R., Rentsch B., Hofmann A., Manthey S., Scharnweber D., Biewener A., Zwipp H. (2010). Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. In Vitro Cell. Dev. Biol. Anim., 46: 624–634.
- Ribitsch I., Oreff G.L., Jenner F. (2021). Regenerative Medicine for Equine Musculoskeletal Diseases. Anim. an Open Access J., 11: 1–30.
- Ripmeester E.G.J., Caron M.M.J., van den Akker G.G.H., Steijns J., Surtel D.A.M., Cremers A., Peeters L.C.W., van Rhijn L.W., Welting T.J.M. (2021). BMP7 reduces the fibrocartilage chondrocyte phenotype. Sci. Rep., 111: 1–11.
- Roberts S., Narisawa S., Harmey D., Millán J.L., Farquharson C. (2007). Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization. J. Bone Miner. Res., 22: 617–627.
- Rosen E.D., Hsu C.H., Wang X., Sakai S., Freeman M.W., Gonzalez F.J., Spiegelman B.M. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev., 16: 22–26.
- Secunda R., Vennila R., Mohanashankar A.M., Rajasundari M., Jeswanth S., Surendran R. (2015). Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology, 67: 793–807.
- Shi C., Iura A., Terajima M., Liu F., Lyons K., Pan H., Zhang H., Yamauchi M., Mishina Y., Sun H. (2016). Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci. Rep., 6: 24256.
- Singh V.K., Saini A., Kalsan M., Kumar N., Chandra R. (2016). Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Front. Cell Dev. Biol., 4: 134.
- Smith R.K.W. (2008). Mesenchymal stem cell therapy for equine tendinopathy. Disabil. Rehabil., 30: 1752–1758.
- Stöckl S., Bauer R.J., Bosserhoff A.K., Göttl C., Grifka J., Grässel S. (2013). Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J. Cell Sci., 126: 2890–2902.
- Strutt Quevedo, H.C., Hatzistergos K.E., Oskouei B.N., Feigenbaum G.S., Rodriguez J.E., Valdes D., Pattany P.M., Zambrano J.P., Hu Q., McNiece I. et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. USA, 106: 14022–14027.
- Suchacki K.J., Morton N.M., Vary C., Huesa C., Yadav M.C., Thomas B.J., Turban S., Bunger L., Ball D., Barrios-Llerena M.E., Guntur A.R., Khavandgar Z., Cawthorn W.P., Ferron M., Karsenty G., Murshed M., Rosen C.J., MacRae V.E., Millán J.L., Farquharson C. (2020). PHOSPHO1 is a skeletal regulator of insulin resistance and obesity. BMC Biol., 18: 149.
- Von Bahr L., Batsis I., Moll G., Hägg M., Szakos A., Sundberg B., Uzunel M., Ringden O., Le Blanc K. (2012). Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells, 30: 1575–1578.
- Weiss A.R.R., Dahlke M.H. (2019). Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front. Immunol., 10: 1191.
- Wu M., Wu S., Chen W., Li Y.P. (2024). The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res., 34: 101–123.
- Xing W., Pourteymoor S., Chen Y., Mohan S. (2022). Targeted Deletion of the Claudin12 Gene in Mice Increases Articular Cartilage and Inhibits Chondrocyte Differentiation. Front. Endocrinol. (Lausanne), 13: 931318.
- Yoon B.S., Ovchinnikov D.A., Yoshii I., Mishina Y., Behringer R.R., Lyons K.M. (2005). Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl. Acad. Sci. USA, 102: 5062.
- Yoon B.S., Pogue R., Ovchinnikov D.A., Yoshii I., Mishina Y., Behringer R.R., Lyons K.M. (2006). BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development, 133: 4667–4678.
- Zhang Z., Cui Y., Su V., Wang D., Tol M.J., Cheng L., Wu X., Kim J., Rajbhandari P., Zhang S., Li W., Tontonoz P., Villanueva C.J., Sallam T. (2023). A PPARγ/long noncoding RNA axis regulates adipose thermoneutral remodeling in mice. J. Clin. Invest., 133(21):e170072.
- Zhao Y., Liu C., Gao Z., Shao D., Zhao X., Wei Q., Ma B. (2022). G protein-coupled estrogen receptor 1 mediates proliferation and adipogenic differentiation of goat adipose-derived stem cells through ERK1/2-NF-κB signaling pathway. Acta Biochim. Biophys. Sin. (Shanghai), 54: 494–503.
- Zhou J., Yu G., Cao C., Pang J., Chen X. (2011). Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells. Int. Orthop., 35: 941–948.