Have a personal or library account? Click to login
Substituting the Fishmeal With Solid-State-Fermented Black Soldier Fly (Hermetia Illucens) Larvae Meal in Gift Tilapia (Oreochromis Niloticus) Fry Diet: Effects for Growth Performance, Carcass Composition and Liver Histology* Cover

Substituting the Fishmeal With Solid-State-Fermented Black Soldier Fly (Hermetia Illucens) Larvae Meal in Gift Tilapia (Oreochromis Niloticus) Fry Diet: Effects for Growth Performance, Carcass Composition and Liver Histology*

Open Access
|Jul 2025

References

  1. AOAC (1995 a). AOAC official methods 920.39, fat (crude) or ether extract in animal feed, final action in: AOAC Official Methods of Analysis. 16th Edition, 1(4): 17.
  2. AOAC (1995 b). AOAC Official Methods 942.05 Ash of Animal Feed. Final Action: AOAC Official Methods of Analysis. 16th Edition, 1(4): 4.
  3. AOAC (1995 c). AOAC Official Method 978.10 Fiber (Crude) in Animal Feed –Fritted Glass Crucible Method in: AOAC Official Method of Analysis, 16th Edition, 1(4):19.
  4. AOAC (1996). AOAC Official Methods Moisture in animal feed, Method 930.15. 16th Edition. Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists, Gaithersburg, MD, USA.
  5. AOAC (1999). Official Methods of Analysis of Association of Official Analytical Chemists. Method 97.09. 16th Edition, 5th Rev., AOAC International, Gaithersburg, MD, USA.
  6. AOAC (2001). Official Methods of Analysis of Association of Official Analytical Chemists. Official method 2001.11, protein (crude) in animal feed, forage (plant and tissue), grain, and oilseed. First Action 2002, AOAC International Gaithersburg MD, USA.
  7. AOAC (2005). Official Method 994.12 Amino Acids in Feeds. Association of Official Analytical Chemists. 18th ed, Washington DC.
  8. Ardra M., Pradhan C., Das S. (2024). The effect of fishmeal replacement with organic acid fermented black soldier fly (Hermetia illucens) larvae meal on growth, nutrient utilization, metabolic enzyme activity, antioxidant status and immunity in pangasius (Pangasianodon hypophthalmus). Aquaculture, 591: 741114.
  9. AVMA (2007). American Veterinary Medical Association (AVMA). AVMA Guidelines on euthanasia (Formerly: Report of the AVMA of the AVAM Panel on Euthanasia) June 2007 39. Available at https://olaw.nih.gov/sites/default/files/Euthanasia2007.pdf. (Accessed 07 March 2023).
  10. Bhendarkar M.P., Kalbande S.R. (2022). GIFT tilapia for climate smart aquaculture. Technical Bulletin no. 38. ICAR –National Institute of Abiotic Stress Management Baramati, Pune, Maharashtra, pp. 27.
  11. Bondari K., Sheppard D. (1981). Soldier fly larvae as feed in commercial fish production. Aquaculture, 24: 103–109.
  12. Bonomini M.G., Prandi B., Calgiani A. (2024). Black soldier fly (Hermetia illucens L.) whole and fractionated larvae: In vitro protein digestibility and effect of lipid chitin removal. Food Res. Int., 196: 115102.
  13. Bruni L., Belghit J., Lock E., Secci G., Taiti C., Parisi G. (2019). Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric., 100.
  14. Caballero M.J., Lopez-Calero G., Socorro J., Roo F.G., Izquierdo M.S., Fernandez A.J. (1999). Combined effect of lipid level and fishmeal quality on liver histology of gilthead seabream (Sparus aurata). Aquaculture, 179: 277–290.
  15. Caligiani A., Marseglia A., Leni G., Baldassarre S., Maistrello L., Dossena A., Sforza, S. (2018). Composition of black soldier fly prepupae and systemic approaches for extraction and fractionation of proteins, lipids, and chitin. Food Res. Int., 105: 812–820.
  16. de Oliveira C.G., Freitas D. de A., Ribeiro P.A.P., Teixeira R.R.C., de Silva R.F., Gamarano P.G., de Araujo R.D., Prado V.G.L., Guilherme G. de O., Paulino R.R., Costa L.S. (2024). Impact of replacing fish meal with black soldier fly (Hermetia illucens) meal on diet accepting in juvenile Nile tilapia: Palatability and nutritional and health considerations for dietary preference. Aquac. Res., 3409955: 1–13.
  17. Diener S., Zurbrügg C., Tockner K. (2015). Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed, 1: 261–270.
  18. Eggink K.M., Dalsgaard J. (2023). Chitin contents in different black soldier fly (Hermetia illucens) life stages. JIFF, 9: 855–863.
  19. Eggink K.M., Pedersen P.B., Lund I., Dalsgaard J. (2022). Chitin digestibility and intestinal exochitinase activity in Nile tilapia and rainbow trout fed different black soldier fly larvae meal size fractions. Aquac. Res., 53: 5536–5546.
  20. El Sayed A.F.M., Tacon A.G.J. (1997). Fish meal replacers for tilapia: A review. In: Feeding tomorrow’s fish, Tacon A.G.J., Basurco B. (eds). Zaragoza, CIHEAM, pp. 205–224.
  21. Fan K., Liu H., Pei Z., Brown P.B., Huang Y. (2023). A study of the potential effect of dietary fishmeal replacement with cricket meal (Gryllus bimaculatus) on growth performance, blood health, liver antioxidant activities, intestinal microbiota and immune-related gene expression of juvenile catfish. Anim. Feed Sci. Technol., 295: 115542.
  22. FAO (2022). The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. The State of World Fisheries and Aquaculture (SOFIA), FAO, Rome, Italy, pp. 266.
  23. Feng H., Zhang Y., Liang X.F., He S., Li L. (2021). Dietary supplementation of exogenous probiotics reduces excessive liver lipid deposition in Chinese perch (Siniperca chuatsi). Aquac. Res., https://doi.org/10.1111/are.15413
  24. Fontes T.V., de Oliveira K.R.B., Almeida I.L.G., Orlando T.M., Rodrigues B., da Costa D.V., Rosa P.V. (2019). Digestibility of insect meals for Nile tilapia fingerlings, J. Anim., 9: 181.
  25. Gougbedji A., Detilleux J., Lalèyè P.A., Francis F., Megido R.C. (2022). Can insect meal replace fishmeal? A meta-analysis of the effects of black soldier fly on fish growth performances and nutritional values, J. Anim., 12: 1700.
  26. Greenpeace (2019). A waste of fish: food security under threat from the fishmeal and fish oil industry in West Africa. Greenpeace International, Amsterdam, Netherlands, pp. 1–51.
  27. Han L., Zhang S., Ma J., Liu X. (2012). Research and optimization of technological process based on fermentation for production of seaweed feed. Green Sustain. Chem., 2: 47–54.
  28. Hassaan M.S., Solton M.A., Abdel-Moez A.M. (2015). Nutritive value of soybean meal after solid-state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol., 201: 89–98.
  29. Iyayi E.A., Losel D.M. (2001). Changes in carbohydrate fractions of cassava peel following fungal solid-state fermentation. JFTA, 6: 101–103.
  30. Jahan R., Tipu M.M.H., Haque M.M., Salam M.A. (2021). Black soldier fly (Hermetia illucens) larvae meal as a fish meal replacement in diets for nursing common carp (Cyprinus carpio) fry. AgriRxiv. http://dx.doi.org/10.31220/agriRxiv.2021.00030
  31. Kari Z.A., Tellez-Isaias G., Humid N.K.A., Rusil N.D., Mat K., Sukri S.A.M., Kabir M.A., Ishak A.R. (2023). Effects of fishmeal substitution with black soldier fly (Hermetia illucens) on growth performance, feed stability, blood biochemistry, and liver and gut morphology of Siamese fighting fish (Betta splendens). Aquac. Nutr., 6676953: 1–15.
  32. Kariuki M.W., Barwani D.K., Mwashi V., Kioko J.K., Munguti J.M., Tanga C.M., Kiiru P., Gichea M.G., Osuga I.M. (2024). Partial replacement of fishmeal with black soldier fly larvae meal in Nile tilapia diets improves performance and profitability in earthen pond. Sci. African, 24: e02222.
  33. Karlund A., Gomez-Gallego C., Kohonen J., Palo-Oja O., El-Nezami H., Kolehmainen M. (2020). Harnessing microbes for sustainable development: Food fermentation as a tool for improving the natural quality of alternative protein sources. J. Nutr., 14: 1020.
  34. Kaviraj A., Mondal K., Mukhopadhyay P.K., Turchini G.M. (2012). Impact of fermented mulberry leaf and fish offal in diet formulation of Indian major carp (Labeo rohita). Proc. Zool. Soc., 66: 64–73.
  35. Kieβling M., Franke K., Heinz V., Aganovic K. (2022). Relationship between substrate composition and larval weight: a simple growth model for black soldier fly larvae. JIFF, 9: 1–10.
  36. Li S., Ji H., Zhang B., Zhou J., Yu H. (2017). Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture, 477: 62–70.
  37. Limbu S.M., Shoko A.P., Ulotu E.E., Luvanga S.A., Munyi F.M., John J.O., Opiyo M.A. (2022). Black soldier fly (Hermetia illucens L.) larvae meal improves growth performance, feed efficiency, and economic returns of Nile tilapia (Oreochromis niloticus L.) fry. Aquac. Fish Fisher., 2: 167–178.
  38. Manpreet S., Sawraj S., Sachin D., Pankaj S., Banerjee U.C. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Malays. J. Microbiol., 1: 1–9.
  39. Mbokane E.M., Mbokane L.M., Fouche C.H. (2022). The effect of fishmeal replacement with acid-fermented chicken silage on growth, digestive enzyme activity and histology of the intestine and liver of Mozambique tilapia (Oreochromis mossambicus). Aquac. Int., 30: 1–22.
  40. Melanchon F., de Mercado F., Pula H.J., Cardenete G., Barroso F.G., Fabrikov D., Lourenco H.M., Pessoa M., Lagos L., Wetththasinghe P., Cortes M., Tomas-Almenar C. (2022). Fishmeal dietary replacement up to 50%: A comparative study of two insect meals for rainbow trout (Oncorhynchus mykiss). J. Anim., 12: 179.
  41. Muin H., Taufek N.M., Kamarudin M.S., Razak S.A. (2017). Growth performance, feed utilization and body composition of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) fed with different levels of black soldier fly, Hermetia illucens (Linnaeus, 1758) maggot meal diet. Iran. J. Fish. Sci., 16: 567–577.
  42. Mumford S.L. (2004). Histology for Finfish. NWFHS Laboratory Manual, Second Edition, Chapter 13: 1–12.
  43. Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kieronczyk B., Józefiak A. (2019). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103.
  44. NSH (2001). National Society for Histotechnology. Guidelines for Hematoxylin and Eosin Staining, www.nsh.org
  45. Ouko K.O., Mboya J.B., Mukhebi A.W., Obiero K.O., Ogello K.O., Munguti J.M., Tanga C.M. (2024). Effect of replacing fish meal with black soldier fly larvae meal on growth performance and economic efficiency of Nile tilapia. Fundam. Appl. Agric., 9: 1–9.
  46. Pandey A., Selvakumar P., Soccol C.R., Nigam P. (1999). Solid-state fermentation for the production of industrial enzymes. J. Curr. Sci., 77: 149–162.
  47. Pascon G., Cardinaletti G., Daniso E., Bruni L., Messina M., Parisi G., Tulli F. (2024). Effect of dietary chitin on growth performance, nutrient utilization, and metabolic response in rainbow trout (Oncorhynchus mykiss). Aquacult. Rep., 37: 102244.
  48. Peh K.L., Shapawi R., Lim L.S. (2021). Black cricket (Gryllus bimaculatus) meal as a protein source in the practical diets for juvenile white leg shrimp (Litopenaeus vannamei), Iran. J. Fish. Sci., 20: 731–740.
  49. Perera A.D., Bhujel R.C. (2021). Field cricket meal (Gryllus bimaculatus) meal (FCM) to replace fishmeal in the diets for sex reversal and nursing of Nile tilapia (O. niloticus) fry. Aquac. Res., 52.
  50. Perera G.S.C., Bhujel R.C. (2022). Replacement of fishmeal by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals: Effect for growth, pigmentation and breeding performances of guppy (Poecilia reticulata), Aquac. Rep., 25: 101260.
  51. Perera G.S.C., Afridin M.R., Adikari A.M.A.N., Heenatigala P.P.M., Maduka K.L.W.T., Dunusinghe S.B.K. (2023 a). Replacing the unsustainable and wild-caught fishmeal with field cricket (Gryllus bimaculatus) meal in catla (Catla catla) fry diet: Effect for growth, in vivo digestibility, carcass composition, histopathological alterations, and disease tolerance. Aquac. Int., 32: 2609–2626.
  52. Perera G.S.C., Perera A.D., Piyavorasakul C., Pumpuang S. (2023b). Fishmeal replacement by house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus) meals in Nile tilapia (Oreochromis niloticus) fingerling feed. Aquacult. Stud., 23(S1), AQUAST1187.
  53. Plaipetch P., Yakupitiyage A. (2012). Use of yeast-fermented canola meal to replace fishmeal in the diet of Asian seabass Lates calcarifer (Bloch, 1790). J. Aquac. Res. Dev., 3.
  54. Qazi J.I., Mumtaz S., Shakir H.A. (2011). Improving fish feed by yeast solid-state fermentation. Punjab Univ. J. Zool., 26: 21–29.
  55. Roslan N.A., Sukri S.A.M., Wei L.S., Shahjahan M., Rohani M.F., Yea C.S., Kabir M.A., Guru A., Goh K.W., Kallen P., Kari Z.A. (2024). Replacement of fishmeal by fermented spent coffee ground: Effects on growth performance, feed stability, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquac. Rep., 36: 102073.
  56. Samaddar A., Kaviraj A., Saha S. (2015). Utilization of fermented animal by-product blend as fishmeal replacer in the diet of Labeo rohita. Aquac. Rep., 1: 28–36.
  57. Sangsawang A., Kovitvadhi S., Pewhom A., Kovitvadhi U., Kovitvadhi A., Wongoutong C., Chatchaiphan S., Pankhao N. (2024). Impacts of substituting fish meal with full-fat or defatted black soldier fly (Hermetia illucens) larvae on growth, quality, and health of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Rep., 38: 102348.
  58. Sedanza M.G.C., Posadas N.G., Jr Serrano A.E., Nunal S.N., Pedroso F., Yoshikawa T. (2016). Development of aquafeed ingredient by solid-state fermentation of the crinklegrass, Rhizoclonium riparium on a laboratory scale. AACL Bioflux, 9: 733–740.
  59. Shahin S., Okomoda V.T., Ma H., Abdulla M.H.D.I. (2023). Sustainable alternative for aquaculture: State of the art and future perspective. PLSU, 01: 62–96.
  60. Sibbald I.R., Price K., Barrette J.P. (1980). True metabolizable value for poultry of commercial diets measured by bioassay and predicted from chemical data. Poult. Sci., 59: 808–811.
  61. Siddek M.A.B., Howieson J., Ilham I., Fotedar R. (2018.) Growth, biochemical response and liver health of juvenile barramundi (Lates calcarifer) fed fermented and non-fermented tuna hydrolysate as fishmeal protein replacement ingredients. Peer J., 6: E4870.
  62. Smets R., Claes J., Borget M.V.D. (2021). On the nitrogen content and a robust nitrogen-to-protein conversion factor of black soldier fly larvae (Hermetia illucens). Anal. Bioanal. Chem., 413: 1–13.
  63. Spisni E., Tugnoli M., Ponticelli A., Mordenti T., Tomasi V. (1998). Hepatic steatosis in artificially fed marine teleosts. J. Fish Dis., 21: 177–184.
  64. Tacon A.G.J., Metian M. (2015). Feed matters: Satisfying the feed demand of aquaculture. Rev. Fish Sci. Aquac., 23: 1–10.
  65. Taufek N.M., Muin H., Raji A.A., Yusof H.M., Alias Z., Razak S.A. (2017). Potential of field cricket’s meal (Gryllus bimaculatus) in the diet of African catfish. J. Appl. Anim. Res., 46: 541–546.
  66. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. (2012). Heavy metals toxicity and the environment. Exp Suppl., 101: 133–164.
  67. Tippayadara N., Dawood M.A.O., Krutmuang P., Hoseinifar S.H., Doan H.V., Paoucci M. (2021). Replacement of fishmeal by black soldier fly (Hermetia illucens) larvae meal: Effects on growth, haematology, and skin mucous immunity of Nile tilapia (Oreochromis niloticus). Animals, 11: 193.
  68. Truzzi C., Girolametti F., Giovannini L., Olivotto I., Zarantoniello M., Scarponi G., Annibaldi A., Illuminati S. (2022). New eco-sustainable feed in aquaculture: influence of insect-based diets on the content of potentially toxic elements in the experimental model zebrafish (Danio rerio). Molecules, 27: 818.
  69. Xie M., Zhou W., Xie Y., Li Y., Zhang Z., Yang Y., Olsen R.E., Ran C., Zhou Z. (2021). Effects of Cetobacterium somerae fermentation product on gut and liver health of common carp (Cyprinus carpio) fed diet supplemented with ultra-micro ground mixed plant proteins. Aquaculture, 543: 736943.
  70. Yakti W., Schulz S., Marten V., Mewis I., Padmanabha M., Hempel A. -J., Kobelski A., Streif S., Ulrichs C. (2022). The effect of rearing scale and density on the growth and nutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae. Sustainability, 14: 1772.
  71. Zarantoniello M., Randazzo B., Truzzi C., Giorgini E., Marcellucci C., Vargs-Abundez J.A., Zimbelli A., Annibaldi A., Parisi G., Tulli F., Riolo P., Olivotto I. (2019a). A six-months study on black soldier fly (Hermetia illucens) based diets in zebrafish. Sci. Rep., 9: 8598.
  72. Zarantoniello M., Zimbelli A., Randazzo B., Compagni M.D., Truzzi C., Antonucci M., Riolo P., Loreto M. (2019 b). Black soldier fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture, 518: 734659.
DOI: https://doi.org/10.2478/aoas-2025-0031 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1129 - 1139
Submitted on: Sep 2, 2024
Accepted on: Feb 27, 2025
Published on: Jul 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Gamage Saman Champika Perera, Don Ananda Athukorala, M.G. Nethmi Ashinsani, Dikkuburge Gihani Sandeepani, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.