References
- Achukwi M.D., Ibeagha-Awemu E.M., Musongong G.A., Erhardt G. (2009). Doayo (Namchi) Bos taurus cattle with low zebu attributes are trypanotolerant under natural vector challenge. Online J. Vet. Res., 13: 94–105.
- Adane H., Girma A. (2008). Economic significance of sheep and goats. In: Sheep and Goat Production Handbook for Ethiopia, Alemu Y., Merkel R.C. (eds). Brana Publishing House, pp. 2–4.
- Adesehinwa A.O.K., Boladuro B.A., Dunmade A.S., Idowu A.B., Moreki J.C., Wachira A.M. (2024). Pig production in Africa: current status, challenges, prospects and opportunities. Anim. Biosci., 37: 730–741.
- Afolabi K.D. (2013). Local or indigenous chicken production: A key to food security, poverty alleviation, disease mitigation and socio-cultural fulfilment in Africa. In: Sustainable food security in the era of local and global environmental change, Behnassi M., Pollmann O., Kissinger G. (eds). Springer Dordrecht Heidelberg, New York, USA, pp. 217–229.
- Akbari M., Foroudi P., Shahmoradi M., Padash H., Parizi Z.S., Khosravani A., Ataei P., Cuomo M.T. (2022). The evolution of food security: Where are we now, where should we go next? Sustainability, 14: 3634.
- Alders R.G., Pym R.A.E. (2009). Village poultry: still important to millions, eight thousand years after domestication. World. Poult. Sci. J., 65: 181–190.
- Alders R.G., Campbell A., Costa R., Guèye E.F., Hoque MdA., Perezgrovas-Garza R., Rota A., Wingett K. (2021). Livestock across the world: diverse animal species with complex roles in human societies and ecosystem services. Anim. Front., 11: 20–29.
- Aleena J., Sejian V., Bagath M., Krishnan G., Beena V., Bhatta R. (2018). Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and PBMC HSP70 expression. Int. J. Biometeorol., 62: 1995–2005.
- Alexandratos N., Bruinsma J. (2012). World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Paper, 12-03, FAO, Rome, Italy.
- Anghinoni G., Anghinoni F.B.G., Tormena C.A., Braccini A.L., Mendes I.D.C., Zancanaro L., Lal R. (2021). Conservation agriculture strengthens the sustainability of Brazilian grain production and food security. Land Use Policy, 108: 105591.
- Ardakani Z., Bartolini F., Brunori G. (2020). New evaluation of small farms: Implications for an analysis of food security. Agriculture, 10: 74.
- Ariza A.G., Arbulu A.A., González F.J.N., Morales F.R., Jurado J.M.L., Capote C.J.B., Camacho V.M.E. (2019). Sensory preference and professional profile affinity definition of endangered native breed eggs compared to commercial laying lineages’ eggs. Animals, 9: 920.
- Aryee S.N.D., Osei-Amponsah R., Adjei O.D., Ahunu B.K., Skinner B.M., Sargent C.A. (2019). Production practices of local pig farmers in Ghana. Int. J. Lives. Prod., 10: 175–181.
- Bakheit M.A., Latif A.A. (2002). The innate resistance of Kenana cattle to tropical theileriosis (Theileria annulata infection) in the Sudan. Ann. N. Y. Acad. Sci., 969: 159–163.
- Barłowska J. (2023). Certified regional food as an important element for preserving the biodiversity of farm animals (in Polish). Postępy Nauk. Techn. Przem. Rolno-Spoż., 77: 80–103.
- Barłowska J., Litwińczuk Z. (2006). Technological usefulness of milk from two local breeds maintained in the regions with great grassland share. Arch. Anim. Tierz., 49: 207–213.
- Barłowska J., Szwajkowska M., Litwińczuk Z., Król J. (2011). Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf., 10: 291–302.
- Barłowska J., Florek M., Litwińczuk Z. (2016). Food Production –Quantity or Quality? Part I (in Polish). Przem. Spoż., 70: 8–12.
- Barłowska J., Pastuszka R., Rysiak A., Król J., Brodziak A., Kędzierska-Matysek M., Wolanciuk A., Litwińczuk Z. (2018). Physicochemical and sensory properties of goat cheeses and their fatty acid profile in relation to the geographic region of production. Int. J. Dairy Technol., 71: 699–708.
- Barłowska J., Pastuszka R., Domaradzki P., Król J., Brodziak A., Teter A., Rysiak A. (2019). Fat dispersion and fatty acid profile, including health indicators in goat milk from different flora composition of grazing sites. Anim. Sci. Pap. Rep., 37: 365–377.
- Barłowska J., Sawicka-Zugaj W., Ślaska B., Król J., Brodziak A., Teter A., Chabuz W. (2022). Genetic analysis of CSN2 in local and international cattle breeds raised in Poland. Anim. Sci. Pap. Rep., 40: 411–422.
- Barłowska J., Polak G., Janczarek I., Tkaczyk E. (2023 a). The influence of selected factors on the nutritional value of the milk of cold-blooded mares: The example of the Sokólski breed. Animals, 13: 1152.
- Barłowska J., Polak G., Janczarek I., Próchniak T. (2023 b). Chemical composition, whey protein profile, and fatty acid profile of milk from Sokólski horses in relation to Polish Halfbred horses. Ann. Anim. Sci., 23: 587–596.
- Barrea L., Grant W.B., Frias-Toral E., Vetrani C., Verde L., de Alteriis G., Docimo A., Savastano S., Colao A., Muscogiuri G. (2022). Dietary recommendations for Post-COVID-19 syndrome. Nutrients, 14: 1305.
- Bayssa M., Yigrem S., Betsha S., Tolera A. (2021). Production, reproduction and some adaptation characteristics of Boran cattle breed under changing climate: A systematic review and meta-analysis. PloS one, 16: e0244836.
- Belaunzaran X., Bessa R.J.B., Lavín P., Mantecón A.R., Kramer J.K.G., Aldai N. (2015). Horse meat for human consumption–Current research and future opportunities. Meat Sci., 108: 74–81.
- Belhaj K., Mansouri F., Tikent A., Taaifi Y., Boukharta M., Serghini H.C., Elamrani A. (2021). Effect of age and breed on carcass and meat quality characteristics of Beni-Guil and Ouled-Djellal sheep breeds. Sci. World J., 1: 5536793.
- Berman A. (2011). Invited review: Are adaptations present to support dairy cattle productivity in warm climates? J. Dairy Sci., 94: 2147–2158.
- Birhanu M.Y., Osei-Amponsah R., Obese F.Y., Dessie T. (2023). Smallholder poultry production in the context of increasing global food prices: roles in poverty reduction and food security. Anim. Front., 13: 17–25.
- Bittante G., Penasa M., Cecchinato A. (2012). Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci., 95: 6843–6870.
- Blasco A. (2008). Breeds in danger of extinction and biodiversity. Rev. Bras. Zootecn., 37: 101–109.
- Brodziak A., Król J., Barłowska J., Litwińczuk Z., Teter A., Kędzierska-Matysek M. (2020). Differences in bioactive protein and vitamin status of milk obtained from Polish local breeds of cows. Ann. Anim. Sci., 20: 287–298.
- Calik J., Połtowicz K., Świątkiewicz S., Krawczyk J., Nowak J. (2015). Effect of caponization on meat quality of Greenleg Partridge cockerels. Ann. Anim. Sci., 15: 541–553.
- Chen L., Chang J., Wang Y., Guo A., Liu Y., Wang Q., Zhu Y., Zhang Y., Xie Z. (2021). Disclosing the future food security risk of China based on crop production and water scarcity under diverse socioeconomic and climate scenarios. Sci. Total Environ., 790: 148110.
- Chiejina S.N., Behnke J.M. (2011). The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections. Parasite. Vector., 4: 1–10.
- Chiofalo V., Maldonato R., Martin B., Dupont D., Coulon J.B. (2000). Chemical composition and coagulation properties of Modicana and Holstein cows’ milk. Ann. Zootech., 49: 497–503.
- Cittadini A., Sarriés M.V., Domínguez R., Indurain G., Lorenzo J.M. (2021). Effect of breed and finishing diet on growth parameters and carcass quality characteristics of Navarre autochthonous foals. Animals, 11: 488.
- Ciurescu G., Idriceanu L., Gheorghe A., Ropotă M., Drăghici R. (2022). Meat quality in broiler chickens fed on cowpea (Vigna unguiculata [L.] Walp) seeds. Sci. Rep., 12: 9685.
- Collomb M., Bütikofer U., Sieber R., Jeangros B., Bosset J-O. (2002). Composition of fatty acids in cow’s milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography. Int. Dairy J., 12: 649–659.
- Czarniecka-Skubina E., Pielak M. (2017). Traditional foods versus foods produced using modern technology. Vistula Univ. Work. Pap., 54: 165–178.
- De Marchi M., Dal Zotto R., Cassandro M., Bittante G. (2007). Milk coagulation ability of five dairy cattle breeds. J. Dairy Sci., 90: 3986–3992.
- Demir E., Ceccobelli S., Bilginer U., Pasquini M., Attard G., Karsli T. (2022). Conservation and selection of genes related to environmental adaptation in native small ruminant breeds: a review. Ruminants, 2: 255–270.
- Devendra C. (2005). Small ruminants in Asia; Contribution to food security, poverty alleviation and opportunities for productivity enhancement. Proc. International Workshop on Small Ruminant Production and Development, South East Asia, Ho Chi Minh City, Vietnam, 2–4.03. 2005, pp. 19–32.
- Devendra C., Liang J.B. (2012). Conference summary of dairy goats in Asia: Current status, multifunctional contribution to food security and potential improvements. Small Rumin. Res., 108: 1–11.
- Di Gregorio D., Bognanno M., Laganà V. R., Nicolosi A. (2022). Local proximity cheeses: Choices that guide consumers and orient producers –Case studies. Sustainability, 15: 740.
- Di Trana A., Sepe L., Di Gregorio P., Di Napoli M.A., Giorgio D., Caputo A.R., Claps S. (2015). The role of local sheep and goat breeds and their products as a tool for sustainability and safeguard of the Mediterranean environment. In: The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin, Vastola A. (ed.) Springer Cham, Potenza, Italy, pp. 77–112.
- Dinc H., Ozkan E., Koban E., Togan I. (2013). Beta-casein A1/A2, kappa-casein and beta-lactoglobulin polymorphisms in Turkish cattle breeds. Arch. Anim. Breed., 56: 650–657.
- Djemali M. (2024). Unlocking the potential of sheep and goat genetics in developing countries. W. J. Adv. Res. Rev., 21: 1959–1965.
- Domaradzki P., Litwińczuk Z., Florek M., Żółkiewski P. (2017). Effect of ageing on the physicochemical properties of musculus longissimus lumborum of young bulls of five breeds. Med. Weter., 73: 802–810.
- Dovc P. (2007). Local breeds and their potential for progress in animal breeding. Stočarstvo: Časopis za unapređenje stočarstva, 61: 463–466.
- FAO (2007). Food and Agriculture Organization of the United Nations. The state of the world’s animal genetic resources for food and agriculture, Rischkowsky B., Pilling. D. (eds). Rome, Italy, pp. 511.
- FAO (2011). Food and Agriculture Organization of the United Nations. World Livestock 2011 –Livestock in food security, McLeod A. (ed.). Rome, Italy, pp. 115.
- FAO (2017). Food and Agriculture Organization of the United Nations. The state of food and agriculture. Leveraging food systems for inclusive rural transformation. Rome, Italy, 160 pp.
- FAO (2021). Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development (IFAD), United Nations Children’s Fund (UNICEF), World Food Programme (WFP), World Health Organization (WHO). The State of Food Security and Nutrition in the World 2021. Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All. FAO, Rome, Italy.
- FAO (2022). Food and Agriculture Organization of the United Nations. Impact of the Ukraine-Russia conflict on global food security and related matters under the mandate of the Food and Agriculture Organization of the United Nations. Rome, Italy, CL 170/6.
- FAO (2023). Food and Agriculture Organization of the United Nations. Status and trends of animal genetic resources –2022. FAO, Rome, Italy.
- FAO (2023). Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development (IFAD), United Nations Children’s Fund (UNICEF), World Food Programme (WFP), World Health Organization (WHO). The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural–urban continuum. The State of Food Security and Nutrition in the World (SOFI), Roma, Italy, pp. 316.
- FAO (2024). Food and Agriculture Organizations of the United Nations. Center for Veterinary Medicine. United States Food and Drug Administration. Global feed safety platform. Online access: https://www.fao.org/feed-safety/databases/organizations-institutions/institutions-details/en/c/1025182/ (accessed: 21.08.2024).
- FAOSTAT (2023). FAOSTAT production data. Online access: https://www.fao.org/faostat/en/#data/OA (accessed: 21.08.2024).
- Fortina R., Barbera S., Lussiana C., Mimosi A., Tassone S., Rossi A., Zanardi E. (2005). Performances and meat quality of two Italian pig breeds fed diets for commercial hybrids. Meat Sci., 71: 713–718.
- Franci O., Bozzi R., Pugliese C. Acciaioli A., Campodoni G., Gandini G. (2005). Performance of Cinta Senese pigs and their crosses with Large White. 1. Muscle and subcutaneous fat characteristics. Meat Sci., 69: 545–550.
- Gandini G., Martín-Collado D., Colinet F., Duclos D., Hiemstra S.J., Soini K., EURECA consortium, Díaz C. (2012). Farmer’s views and values to focus on cattle conservation policies: the case of eight European countries. J. Anim. Breed. Genet., 29: 427–435.
- Garbayo E.D. (2016). El Ibérico: Una visión global. Solo Cerdo Iberico, 36: 122–132.
- Gaughan J., Cawdell-Smith A.J. (2015). Impact of climate change on livestock production and reproduction. In: Climate change impact on livestock: adaptation and mitigation, Sejian V., Gaughan J., Baumgard L., Prasad C. (eds). Springer, New Delhi, Indie, pp. 51–60.
- Gheyas A.A., Vallejo-Trujillo A., Kebede A., Lozano-Jaramillo M., Dessie T., Smith J., Hanotte O. (2021). Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens. Mol. Biol. Evol., 38: 4268–4285.
- Godfray H.C.J., Garnett T. (2014). Food security and sustainable intensification. Phil. Trans. R. Soc. B. 369: 20120273.
- Govindasamy K., Gonmei C., Singh N.S., Singh N.M. (2022). Thermal stress-related physiological, behavioral, and serum biochemical responses in indigenous pigs adapted to Eastern Himalayan region. Front. Vet. Sci., 9: 1034635.
- Guan R., Lyu F., Chen X., Ma J., Jiang H., Xiao C. (2013). Meat quality traits of four Chinese indigenous chicken breeds and one commercial broiler stock. J. Zhejiang Univ-Sci. B (Biomed. & Biotechnol.), 14: 896–902.
- Guèye H.F. (1998). Village egg and fowl meat production in Africa. J. World. Poult. Sci., 54: 82–86.
- Hassen T.B., El Bilali H. (2022). Impacts of the Russia-Ukraine war on global food security: Towards more sustainable and resilient food systems? Foods, 11: 2301.
- Hiemstra S.J., de Haas Y., Mäki-Tanila A., Gandini G. (2010). Local cattle breeds in Europe. Development of policies and strategies for self-sustaining breeds. Wageningen Academic Publishers, The Netherlands, 154 pp..
- Hlongwane N.L., Hadebe K., Soma P., Dzomba E.F., Muchadeyi F.C. (2020). Genome-wide assessment of genetic variation and population distinctiveness of the pig family in South Africa. Front. Genet., 11: 344.
- Hoffmann I. (2010). Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet., 41: 32–46.
- Horrillo A., Gaspar P., Muñoz A., Escribano M., González E. (2023). Fattening Iberian pigs indoors vs. outdoors: Production performance and market value. Animals, 13: 506.
- Ickowitz A., Powell B., Rowland D., Jones A., Sunderland T. (2019). Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Sec., 20: 9–16.
- Insausti K., Beldarrain L.R., Lavín M.P., Aldai N., Mantecón Á.R., Sáez J.L., Canals R.M. (2021). Horse meat production in northern Spain: ecosystem services and sustainability in High Nature Value farmland. Anim. Front., 11: 47–54.
- Jambo Y., Alemu A., Tasew W. (2021). Impact of small-scale irrigation on household food security: evidence from Ethiopia. Agric Food Secur., 10: 21.
- Janiszewski P., Grześkowiak E., Lisiak D., Szulc K., Borzuta K. (2015). Quality and technological suitability of pork meat from Zlotnicka Spotted pigs and their crossbreeds with Duroc and Polish Large White. Sci. Ann. Pol. Soc. Anim. Prod., 11: 83–93.
- Jenderedjian A., Bellows A.C. (2021). Rural poverty, violence, and power: Rejecting and endorsing gender mainstreaming by food security NGOs in Armenia and Georgia. World Dev., 140: 105270.
- Jian W., Duangjinda M., Vajrabukka C., Katawatin S. (2014). Differences of skin morphology in Bos indicus, Bos taurus, and their crossbreds. Int. J. Biometeorol., 58: 1087–1094.
- Jones P.G., Thornton P.K., (2009). Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change. Environ. Sci. Policy, 12: 427–437.
- Kabylbekova D., Assanbayev T.S., Kassymbekova S., Kantanen J. (2024). Genetic studies and breed diversity of Kazakh native horses: A comprehensive review. Adv. Life Sci., 11: 18–27.
- Kaliber M., Koluman N.A.Z.A.N., Silanikove N. (2016). Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions. Animal, 10: 82–88.
- Kantanen J., Løvendahl P., Strandberg E., Eythorsdottir E., Li M.-H., Kettunen-Præbel A., Berg P., Meuwissen T. (2015). Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries. Front. Genet., 6: 1–9.
- Kasprzyk A., Walenia A. (2023). Native pig breeds as a source of bio-diversity –breeding and economic aspects. Agriculture, 13: 1528.
- Kawęcka A., Pasternak M. (2022). The effect of slaughter age on meat quality of male kids of the Polish Carpathian native goat breed. Animals, 12: 702.
- Kawęcka A., Pasternak M., Słoniewska D., Miksza-Cybulska A., Bagnicka E. (2020). Quality of mountain sheep milk used for the production of traditional cheeses. Ann. Anim. Sci., 20: 299–314.
- Khanna S.K. (2020). Food availability, food security, and maternal mental health. Ecol. Food Nutr., 59: 1–2.
- Kidane L., Kejela A. (2021). Food security and environment conservation through sustainable use of wild and semi-wild edible plants: a case study in Berek Natural Forest, Oromia special zone, Ethiopia. Agric Food Secur., 10: 29.
- Knežević N., Grbavac S., Palfi M. (2019). Country of origin –the importance for consumers. Eur. Food Feed Law Rev., 14: 528–532.
- Kopuzlu S., Esenbuga N., Onenc A., Macit M., Yanar M., Yuksel S., Ozluturk A., Unlu N. (2018). Effects of slaughter age and muscle type on meat quality characteristics of Eastern Anatolian Red bulls. Arch. Anim. Breed., 61: 497–504.
- Król J., Litwińczuk Z., Brodziak A., Sawicka-Zugaj W. (2010). Bioactive protein content in milk from local breeds of cows included in the genetic resources conservation programme. Ann. Anim. Sci., 10: 213–221.
- Król J., Brodziak A., Litwińczuk Z., Litwińczuk A. (2013). Effect of age and stage of lactation on whey protein content in milk of cows of different breeds. Pol. J. Vet. Sci., 16: 395–397.
- Kurmangaliyev S.G., Mizambekova S.K., Akylbaev R.S., Turysbecova G.K. (2013). About the status of meat industry in Kazakhstan and in the world. Middle East J. Sci. Res., 17: 434–439.
- Kyvsgaard N.C., Luna L.A., Nansen P., Dolberg F., Peterson P.H. (2000). Analysis of traditional grain and scavenge based poultry system in Nicaragua. Proc. Workshop on Poultry as a Tool in Poverty Eradication and Promotion of Gender Equality, Tune, Denmark, pp. 103–109.
- Langlois B.B. (2011). The history, ethnology and social importance of mare’s milk consumption in Central Asia. J. Life Sci., 5: 863–887.
- Leroy G., Baumung R., Boettcher P., Besbes B. From T., Hoffmann I. (2018). Animal genetic resources diversity and ecosystem services. Glob. Food Secur., 17: 84–91.
- Li J., Yang C., Peng H., Yin H., Wang Y., Hu Y., Yu C., Jiang X., Du H., Li O., Liu Y. (2020). Effects of slaughter age on muscle characteristics and meat quality traits of Da-Heng meat-type birds. Animals, 10: 69.
- Liang B.J., Paengkoum P. (2019). Current status, challenges and the way forward for dairy goat production in Asia –conference summary of dairy goats in Asia. Asian-Australas J. Anim. Sci., 32: 1233–1243.
- Liang X., Duan Q., Li B., Wang Y., Bu Y., Zhang Y., Kuang Z., Mao L., An X., Wang H., Yang X., Wan N., Feng Z., Shen W., Miao W., Chen J., Liu S., Storz J.F., Liu J., Nevo E., Li K. (2024). Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc. Natl. Acad. Sci., 121: e2322291121.
- Litwińczuk Z., Barłowska J., Chabuz W., Brodziak A. (2012). The nutritional value and technological suitability of milk from cows of 3 Polish breeds included in the programme of genetic resources conservation. Ann. Anim. Sci., 12: 423–432.
- Litwińczuk Z., Domaradzki P., Florek M., Żółkiewski P. (2016). Chemical composition, fatty acid profile, including health indices of intramuscular fat, and technological suitability of the meat of young bulls of three breeds included in a genetic resources conservation programme fattened within a low-input system. Anim. Sci. Pap. Rep., 34: 387–397.
- Liu X., Zhang Y., Li Y., Jianfei P., Wang D., Chen W., Zheng Z., He X., Zhao Q., Pu J., Weijun G., Han J., Orlando L., Ma Y., Jiang L. (2019). EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol. Biol. Evol., 36: 2591–2603.
- Lordelo M., Cid J., Cordovil C.M.D.S., Alves S.P., Bessa R.J.B., Carolino I. (2020). A comparison between the quality of eggs from indigenous chicken breeds and that from commercial layers. Poult. Sci., 99: 1768–1776.
- Lorido L., Ventanas S., Akcan T., Estévez M. (2016). Effect of protein oxidation on the impaired quality of dry-cured loins produced from frozen pork meat. Food Chem., 196: 1310–1314.
- Luković Z., Škorput D., Karolyi D., Kaić A. (2023). Prospects for sustainable production of the Banija Spotted pig in relation to fattening, carcass, and meat quality traits: A preliminary study. Sustainability, 15: 3288.
- Ma Q.Q., Jiao W.J., Wang Z.Y., Wu C.X., Shan A.S., Wang Y.B., Cai J.M. (2014). Tissue specificity and species superiority of cathelicidin gene expression in Chinese indigenous Min pigs. Livest. Sci., 161: 36–40.
- Mapiye C., Mwale M., Mupangwa J.F., Chimonyo M., Foti R., Mutenje M.J. (2008). A research review of village chicken production constraints and opportunities in Zimbabwe. Asian-Australas. J. Anim. Sci., 21: 1680–1688.
- Mapiye O., Chikwanha O.C., Makombe G., Dzama K., Mapiye C. (2020). Livelihood, food and nutrition security in Southern Africa: What role do indigenous cattle genetic resources play? Diversity, 12: 74.
- Mariante A.D.S., Egito A.D. (2002). Animal genetic resources in Brazil: result of five centuries of natural selection. Theriogenology, 57: 223–235.
- Mbuthia J.M., Rewe T.O., Kahi A.K. (2015). Analysis of pig breeding management and trait preferences in smallholder production systems in Kenya. Anim. Genet. Res., 56: 111–117.
- McManus C., Paluda G.R., Louvandini H., Gugel R., Sasaki L.C.B., Paiva S.R. (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop. Anim. Health Prod., 41: 95–101.
- Michael P., de Cruz C.R., Mohd Nor N., Jamli S., Goh Y.M. (2022). The potential of using temperate–tropical crossbreds and agricultural by-products, associated with heat stress management for dairy production in the tropics: A review. Animals, 12: 1.
- Milković S., Lončarić R., Kralik I., Kristić J., Crnčan A., Kušec D., Canavari M. (2023). Consumers’ preference for the consumption of fresh Black Slavonian pig’s meat. Foods, 12: 1255.
- Miraglia N., Salimei E., Fantuz F. (2020). Equine milk production and valorization of marginal areas –A review. Animals, 10: 353.
- Monteiro A.C.G., Gomes E., Barreto A.S., Silva M.F., Fontes M.A., Bessa R.J.B., Lemos J.P.C. (2013). Eating quality of “Vitela Tradicional do Montado”-PGI veal and Mertolenga-PDO veal and beef. Meat Sci., 94: 63–68.
- Moreno-Indiasa I., Hernández-Castellano L.E., Morales-Delanuez A., Castro N., Capote J., Mendoza-Grimón V., Rivero M.A., Argüello A. (2011). Differences in meat quality of local cattle breed from outermost EU zone vs. commercial. J. App. Anim. Res., 39: 328–333.
- Motsepe R., Mabelebele M., Norris D., Brown D., Ngambi J., Ginindza M. (2016). Carcass and meat quality characteristics of South African indigenous chickens. Indian J. Anim. Res., 50: 580–587.
- Mottet A., de Haan C., Falcucci A., Tempio G., Opio C., Gerber P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur., 14: 1–8.
- Mottet A., Teillard F., Boettcher P., De’Besi G., Besbes B. (2018). Review: Domestic herbivores and food security: current contribution, trends and challenges for sustainable development. Animal, 12: 188–198.
- Moula N., Antoine-Moussiaux N., Decuypere E., Farnir F., Mertens K., De Baerdemaeker J., Leroy P. (2010). Comparative study of egg quality traits in two Belgian local breeds and two commercial lines of chickens. Arch. Geflugelkd., 74: 164–171.
- Mujibi F.D., Okoth E., Cheruiyot E.K., Onzere C., Bishop R.P., Fèvre E.M., Thomas L., Masembe C., Plastow G., Rothschild M. (2018). Genetic diversity, breed composition and admixture of Kenyan domestic pigs. PLoS ONE, 13: e0190080.
- Mujyambere V., Adomako K., Olympio S.O., Ntawubizi M., Nyinawamwiza L., Mahoro J., Conroy A. (2022). Local chickens in East African region: their production and potential. Poult. Sci., 101: 101547.
- Myćka G., Musiał A.D., Stefaniuk-Szmukier M., Piórkowska K., Ropka-Molik K. (2020). Variability of ACOX1 gene polymorphisms across different horse breeds with regard to selection pressure. Animals, 2225.
- Nabuuma D., Ekesa B., Faber M., Mbhenyane X. (2021). Community perspectives on food security and dietary diversity among rural smallholder farmers: A qualitative study in central Uganda. J. Agric. Food Res., 5: 100183.
- Naskar S., Gowane G.R., Chopra A., Paswan C., Prince L.L.L. (2012). Genetic adaptability of livestock to environmental stresses. In: Environmental stress and amelioration in livestock production, Sejian V., Naqvi S., Ezeji T., Lakritz J., Lal R. (eds). Springer, Berlin, Heidelberg, pp. 317–378.
- Ngambi J.W., Alabi O.J., Norris D. (2013). Role of goats in food security, poverty alleviation and prosperity with special reference to Sub-Saharan Africa: A review. J. Anim. Res., 47: 1–9.
- Nuraini H., Aditia E.L., Brahmantiyo B. (2018). Meat quality of Indonesian local cattle and buffalo. In: Bovine science –a key to sustainable development, Sadashiv S.O., Patil S.J. (eds). IntechOpen Publishers, London, United Kingdom, pp. 65–78.
- Padhi M.K. (2016). Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica, 2604685.
- Paiva S.R., McManus C.M., Blackburn H. (2016). Conservation of animal genetic resources –A new tact. Livest. Sci., 193: 32–38.
- Pakravan-Charvadeh M.R., Savari M., Khan H.A., Gholamrezai S., Flora C. (2021). Determinants of household vulnerability to food insecurity during COVID-19 lockdown in a mid-term period in Iran. Public Health Nutr., 24: 1619–1628.
- Peng W., Berry E.M. (2019). The concept of food security. In: Encyclopedia of Food Security and Sustainability, Ferranti P., Berry E.M., Anderson J.R. (eds). Elsevier, pp. 1–7.
- Perfecto I., Vandermeera J. (2010). The agroecological matrix as an alternative to the land-sparing/agriculture intensification model. Proc. Natl. Acad. Sci., 107: 5786–5791.
- Pieszka M., Łuszczyński J., Szeptalin A. (2011). Comparison of mare’s milk composition of different breeds. Nauka Przyr. Techn., 5: 1–5.
- Pietrzak-Fiećko R., Tomczyński R., Smoczyński S.S. (2013). Effect of lactation period on the fatty acid composition in mares’ milk from different breeds. Arch. Anim. Tierz., 56: 335–343.
- Pilling D., Hoffmann I. (2011). Climate change and animal genetic resources for food and agriculture: state of knowledge, risks and opportunities. FAO CGRFA Background Study Paper, Rome, Italy.
- Pius L., Huang S., Wanjala G., Bagi Z., Kusza S. (2024). African local pig genetic resources in the context of climate change adaptation. Animals, 14: 2407.
- Rachman M.P., Bamidele O., Dessie T., Smith J., Hanotte O., Gheyas A.A. (2024). Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci. Rep., 14: 2209.
- Radzik-Rant A., Rozbicka-Wieczorek A., Czauderna M., Rant W., Kuczyńska B. (2011). The chemical composition and fatty acid profile in the milk of Polish Mountain Sheep and Polish Merino. Anim. Sci., 49: 63–172.
- Razmaitė V., Šveistienė R., Šiukščius A. (2024). Effects of genotype on pig carcass, meat quality and consumer sensory evaluation of loins and bellies. Foods, 13: 798.
- Rizzi C., Cendron F., Penasa M., Cassandro M. (2023). Egg quality of Italian local chicken breeds: I. Yield performance and physical characteristics. Animals, 13: 148.
- Rossetti C., Perucatti A., Mottola F., Incarnato D., Genualdo V. (2021). Genetic investigation for the characterization of three indigenous pig breeds in southern Italy: advantages and prospects. Anim. Sci. Pap. Rep., 39: 141–150.
- Sachs J.D., Ballie J.E.M., Sutherland W.J., Aimsworth P.R., Ash N., Beddington J., Blackburn T.M., Collen B., Gardiner B., Gastron K.J., Godfray H.C.J., Green R.E., Harvey P.H., House B., Knapp S., Kümpel N.F., Macdonald D.W., Mace G.M., Mallett J., Matthews A., May R.M., Petchey O., Purvis A., Roe D., Safi K., Turner K., Walpole M., Watson R., Jones K.E., Watson R. (2009). Biodiversity conservation and the millennium development goals. Science, 325: 1502–1503.
- Salimei E., Fantuz F. (2012). Equid milk for human consumption. Int. Dairy J., 24: 130–142.
- Sayila A. (1998). Village chicken more popular in Zambia. World Poult., 14: 47–48.
- Scanes C.G. (2018). Animal products and human nutrition. In: Animals and Human Society, Scanes C.G., Toukhsati S.R. (eds). Academic Press, Wisconsin, USA, pp. 41–64.
- Sejian V., Bagath M., Krishnan G., Rashamol V.P., Pragna P., Devaraj C., Bhatta R. (2019). Genes for resilience to heat stress in small ruminants: A review. Small Rumin. Res., 173: 42–53.
- Seo S.N., Mendelsohn R. (2008). Measuring impacts and adaptation to climate change: a structural Ricardian model of African livestock management. Agric. Econ., 38: 151–165.
- Shen J., Hanif Q., Cao Y., Yu Y., Lei C., Zhang G., Zhao Y. (2020). Whole genome scan and selection signatures for climate adaption in Yanbian cattle. Front. Genet., 11: 94.
- Sokołowicz Z., Krawczyk J., Świątkiewicz S. (2016). Quality of poultry meat from native chicken breeds –a review. Ann. Anim. Sci., 6: 347–368.
- Sokołowicz Z., Dykiel M., Krawczyk J., Augustyńska-Prejsnar A. (2019). Effect of layer genotype on physical characteristics and nutritive value of organic eggs. CyTA –J. Food, 17: 11–19.
- Solomon T., Hussen E. (2018). Benefits of farm animal genetic adaptation: A review. Eur. Exp. Biol., 8: 22.
- Stanciu S. (2015). Horse meat consumption –between scandal and reality. Proc. Econ. Financ., 23: 697–703.
- Steinfeld H., Wassenaar T., Jutzi S. (2006). Livestock production systems in developing countries: status, drivers, trends. Rev. Sci. Tech., 25: 505–516.
- Stocco G., Cipolat-Gotet C., Gasparotto V., Cecchinato A., Bittante G. (2018). Breed of cow and herd productivity affect milk nutrient recovery in curd, and cheese yield, efficiency and daily production. Animal, 12: 434–444.
- Szulc K., Skrzypczak E., Buczyński J.T., Stanisławski D., Jankowska-Mąkosa A., Knecht D. (2012). Evaluation of fattening and slaughter values and also the meat quality determination in Zlotnicka Spotted pigs and their crosses with duroc breed. Czech J. Anim. Sci., 57: 95–107.
- Szulc K., Nowaczewski S., Skrzypczak E., Szyndler-Nędza M., Babicz M. (2024). Quality and processability of meat in Polish native pigs –a review. Ann. Anim. Sci., 24: 1107–1122.
- Szyndler-Nędza M., Świątkiewicz M., Migdał Ł., Migdał W. (2021). The quality and health-promoting value of meat from pigs of the native breed as the effect of extensive feeding with acorns. Animals, 11: 789.
- Teter A., Barłowska J., Florek M., Kędzierska-Matysek M., Król J., Brodziak A., Litwińczuk Z. (2019). Coagulation capacity of milk of local Polish and Holstein-Friesian cattle breeds. Anim. Sci. Pap. Rep., 37: 259–268.
- Therkildsen M., Jensen S. K., Kongsted A.G. (2021). Crossbreed and feed allowance affect final meat and eating quality of pigs from a free-range system. Livest. Sci., 250: 104584.
- Thieme O., Sonaiya F., Rota A., Guèye F., Dolberg F., Alders R. (2014). Defining family poultry production systems and their contribution to livelihoods. In: Decision tools for family poultry development. FAO Animal Production and Health Guidelines, No. 16. Rome, Italy, pp. 3–8.
- Tscharntke T., Clough Y., Wanger T.C., Jackson L., Motzke I., Perfecto I., Vandermeer J., Whitbread A. (2012). Global food security, bio-diversity conservation and the future of agricultural intensification. Biol. Conserv., 151: 53–59.
- Ujmajuridze L., Mitichashvili R., Potskhveria S., Kiliptari T. (2019). Genetic and farming features of the Kakhetian pig gene pool and epizootic characteristics of helminthiases of this breed. Ann. Agrar. Sci., 17: 108–112.
- Vordermeier M., Ameni G., Berg S., Bishop R., Robertson B. D., Aseffa A., Hewinson R.G., Young, D. B. (2012). The influence of cattle breed on susceptibility to bovine tuberculosis in Ethiopia. Comp. Immunol. Microbiol. Infect. Dis., 35: 227–232.
- Wang M., Liu Y., Bi X., Ma H., Zeng G., Guo J., Guo M., Ling Y., Zhao C. (2022). Genome-wide detection of copy number variants in Chinese indigenous horse breeds and verification of CNV-overlapped genes related to heat adaptation of the Jinjiang horse. Genes, 13: 603.
- Weerasingha V., Priyashantha H., Ranadheera C.S., Prasanna P., Silva P., Vidanarachchi J.K., Johansson M. (2020). Milk coagulation properties: A study on milk protein profile of native and improved cattle breeds/types in Sri Lanka. Dairy, 3: 710–721.
- Węglarz A., Andres K., Wojtysiak D. (2020). Slaughter value and meat quality in two strains of Polish crested cockerels. Ital. J. Anim. Sci., 19: 813–821.
- Wodajo H.D., Gemeda B.A., Kinati W., Mulem A.A., van Eerdewijk A., Wieland B. (2020). Contribution of small ruminants to food security for Ethiopian smallholder farmers. Small Rumin. Res., 184: 106064.
- Wolanciuk A., Barłowska J., Litwińczuk Z., Florek M. (2016). Suitability of the milk of native breeds of cows from low-input farms for cheese production, including rennet curd texture. Int. J. Dairy Technol., 69: 585–591.
- Wollny C.B.A., Chagunda M.G.G., Dossa G.L.H., Gondwe T.N.P. (2003). The conservation of animal genetic resources to facilitate food security and poverty alleviation. In: Food quality: a challenge for north and south, IAAS, Belgium, pp. 39–50.
- Wong J.T., de Bruyn J., Bagnol B., Grieve H., Li M., Pym R., Alders R.G. (2017). Small-scale poultry and food security in resource-poor settings: A review. Glob. Food Secur., 15: 43–52. Worldometers (2024). https://www.worldometers.info/world-population/ (access: 21.08.2024).
- Xayalath S., Balogh E., Rátky J. (2020). The role of animal bree- ding with special regard to native pigs of food supply and rural development in Laos. Acta Agraria Debreceniensis, 1: 149–154.
- Xie H., Wen Y., Choi Y., Zhang X. (2021). Global trends on food security research: A bibliometric analysis. Land, 10: 119.
- Yaro M., Munyard K.A., Stear M.J., Groth D.M. (2016). Combatting African animal trypanosomiasis (AAT) in livestock: the potential role of trypanotolerance. Vet. Parasitol., 225: 43–52.