Have a personal or library account? Click to login
The impacts of thermal stress on dairy cattle physiology, metabolism, health, and performance: a comprehensive review Cover

The impacts of thermal stress on dairy cattle physiology, metabolism, health, and performance: a comprehensive review

Open Access
|Feb 2025

References

  1. Salem H.M., Alqhtani A.H., Swelum A.A., Babalghith A.O., Melebary S.J., Soliman S.M., Khafaga A.F., Selim S., El-Saadony M.T., El-Tarabily K.A., Abd El-Hack M.E. (2022). Heat stress in poultry with particular reference to the role of probiotics in its amelioration: An updated review. J. Therm. Biol., 108: 103302.
  2. Abeni F., Galli A. (2017). Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow. Int. J. Biometeorol., 61: 417–425.
  3. Alagawany M., Elnesr S.S., Farag M.R., El-Naggar K., Taha A.E., Khafaga A.F., Madkour M., Salem H.M., Eltahan A., El-Saadony M.T., Abd El-Hack M. (2022). Betaine and related compounds: Chemistry, metabolism, and role in mitigating heat stress in poultry. J. Therm. Biol., 2021: 103168.
  4. Alagawany M., Farag M.R., Abd El-Hack M.E., Patra A. (2017). Heat stress: Effects on productive and reproductive performance of quails. World. Poult. Sci. J., 73: 747–756.
  5. Alamer M. (2011). The role of prolactin in thermoregulation and water balance during heat stress in domestic ruminants. Asian J. Anim. Vet. Adv., 6: 1514– 1169.
  6. Albright J. L., Alliston C. W. (1971). Effects of varying the environment upon the performance of dairy cattle. J. Anim. Sci., 32: 566–577.
  7. Allen J.D., Hall L.W., Collier R.J., Smith J.F. (2015). Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci., 98: 118–127.
  8. Allen T. (1962). Responses of Zebu, Jersey, Zebu X. Jersey crossbred heifers to rising temperature, with particular reference to sweating. Aust. J. Agri. Res., 13: 165–179.
  9. Almeida R.A., Kerro-Dego O., Rius A.G. (2018). Effect of heat stress on the interaction of Streptococcus uberis with bovine mammary epithelial cells. J. Dairy Res., 85: 53–56.
  10. Ammer S., Lambertz C., Gauly M. (2016). Is reticular temperature a useful indicator of heat stress in dairy cattle? J. Dairy Sci., 99: 10067–10076.
  11. Ammer S., Lambertz C., von Soosten D., Zimmer K., Meyer U., Dänicke S., Gauly M. (2018). Impact of diet composition and temperature–humidity index on water and dry matter intake of high-yielding dairy cows. J. Anim. Physiol. Anim. Nutr. (Berl.), 102: 103–113.
  12. Armstrong D.V. (1994). Heat stress interaction with shade and cooling. J. Dairy Sci., 77: 2044–2050.
  13. Atkins I.K., Cook N.B., Mondaca M.R., Choi C.Y. (2018). Continuous respiration rate measurement of heat-stressed dairy cows and relation to environment, body temperature, and lying time. Trans. ASABE, 61: 1475–1485.
  14. Bagath M., Krishnan G., Devaraj C., Rashamol V.P., Pragna P., Lees A.M. (2019). The impact of heat stress on the immune system in dairy cattle: a review. Res. Vet. Sci., 126: 94–102.
  15. Bandaranayaka D.D., Holmes C.W. (1976). Changes in the composition of milk and rumen contents in cows exposed to a high ambient temperature with controlled feeding. Trop. Anim . Health Prod., 8: 38–46.
  16. Bauman D.E., Currie W.B. (1980). Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci., 63: 1514– 1529.
  17. Bauman D.E., Vernon R.G. (1993). Effects of exogenous bovine somatotropin on lactation. Annu. Rev. Nutr., 13: 437–461.
  18. Baumgard L.H., Rhoads R.P. (2012). Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress. J. Anim. Sci., 90: 1855–1865.
  19. Beatty D.T., Barnes A., Taylor E., Pethick D., McCarthy M., Maloney S.K. (2006). Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci., 84: 972–985.
  20. Becker C.A., Aghalari A., Marufuzzaman M., Stone A.E. (2020). Predicting dairy cattle heat stress using machine learning techniques. J. Dairy Sci., 104: 501–524.
  21. Beede D.K., Collier R.J. (1986). Potential nutritional strategies for intensively managed cattle during thermal stress1, 2. J. Anim. Sci., 62: 543–554.
  22. Beere H.M. (2004). The stress of dying: the role of heat shock proteins in the regulation of apoptosis. J. Cell Sci., 117: 2641–2651.
  23. Bell M.J., Wall E., Russell G., Roberts D.J., Simm G. (2010). Risk factors for culling in Holstein-Friesian dairy cows. Vet. Rec., 167: 238–240.
  24. Berman A. (2011). Invited review: Are adaptations present to support dairy cattle productivity in warm climates? J. Dairy Sci., 94: 2147–2158.
  25. Berman A., Folman Y., Kaim M., Mamen M., Herz Z., Wolfenson D., Arieli A., Graber Y. (1985). Upper critical temperatures and forced ventilation effects for high- yielding dairy cows in a subtropical climate. J. Dairy Sci., 68: 1488–1495.
  26. Bernabucci U., Bani P., Ronchi B., Lacetera N., Nardone A. (1999). Influence of short- and long-term exposure to a hot environment on rumen passage rate and diet digestibility by Friesian heifers. J. Dairy Sci., 82: 967–973.
  27. Bernabucci U., Biffani S., Buggiotti L., Vitali A., Lacetera N., Nardone A. (2014). The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci., 97: 471–486.
  28. Bernabucci U., Lacetera N., Baumgard L.H., Rhoads R.P., Ronchi B., Nardone A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4: 1167–1183.
  29. Bernabucci U., Lacetera N., Danieli P.P., Bani P., Nardone A., Ronchi B. (2009). Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep. Int. J. Biometeorol., 53: 387–395.
  30. Bett B., Kiunga P., Gachohi J., Sindato C., Mbotha D., Robinson T. (2017). Effects of climate change on the occurrence and distribution of livestock diseases. Prev. Vet. Med., 137: 119–29.
  31. Bewley J.M., Grott M.W., Einstein M.E., Schutz M.M. (2008). Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J. Dairy Sci., 91: 3880– 3887.
  32. Bhanuprakash V., Singh U., Sengar G., Sajjanar B., Bhusan B., Raja T.V. (2016). Differential effect of thermal stress on HSP70 expression, nitric oxide production and cell proliferation among native and crossbred dairy cattle. J. Therm. Biol., 59: 18–25.
  33. Bhattacharya A.N., Warner R.G. (1968). Influence of varying rumen temperature on central cooling or warming and on regulation of voluntary feed intake in dairy cattle. J. Dairy Sci., 51: 1481–1489.
  34. Bianca W. (2009). Acclimatization of calves to a hot humid environment. J. Agri. Sci., 52: 305–312.
  35. Bishop-Williams K.E., Berke O., Pearl D.L., Hand K., Kelton D.F. (2015). Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010–2012. BMC Vet. Res., 11: 291.
  36. Blackshaw J.K., Blackshaw A.W. (1994). Heat stress in cattle and the effect of shade on production and behaviour: a review. Aust. J. Exp. Agric., 34: 285–295.
  37. Blake M.J., Udelsman R., Feulner G.J., Norton D.D., Holbrook N.J. (1991). Stress- induced heat shock protein 70 expression in adrenal cortex: an adrenocorticotropic hormone- sensitive, age-dependent response. Proceed. Nat. Acad. Sci., 88: 9873–9877.
  38. Blaxter K.L., Graham N.M., Wainman F.W., Armstrong D.G. (2009). Environmental temperature, energy metabolism and heat regulation in sheep. II. The partition of heat losses in closely clipped sheep. J. Agri. Sci., 52: 25–40.
  39. Blazquez N.B., Long S.E., Mayhew T.M., Perry G.C., Prescott N.J., Wathes C. (1994). Rate of discharge and morphology of sweat glands in the perineal, lumbodorsal and scrotal skin of cattle. Res. Vet. Sci., 57: 277–284.
  40. Blix A.S., Walløe L., Folkow L.P. (2011). Regulation of brain temperature in winter- acclimatized reindeer under heat stress. J. Exper. Biol., 214: 3850– 3856.
  41. Bohler M.W., Chowdhury V.S., Cline M.A., Gilbert E.R. (2021). Heat stress responses in birds: A review of the neural components. Biology, 10: 1095.
  42. Bohmanova J., Misztal I., Cole J.B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci., 90: 1947–1956.
  43. BoM Bureau of Meterology. (2014). Accessed April 2014, http://www.bom.gov.au/climate/current/statements/
  44. Bouraoui R., Lahmar M., Majdoub A., Djemali M., Belyea R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res., 51: 479–491.
  45. Brenaut P., Bangera R., Bevilacqua C., Rebours E., Cebo C., Martin P. (2012). Validation of RNA isolated from milk fat globules to profile mammary epithelial cell expression during lactation and transcriptional response to a bacterial infection. J. Dairy Sci., 10: 6130–6144.
  46. Brown C.A., Chandler P.T., Holter J.B. (1977). Development of predictive equations for milk yield and dry matter intake in lactating cows. J. Dairy Sci., 60: 1739–1754.
  47. Brown-Brandl T.M., Nienaber J.A., Eigenberg R.A., Hahn G.L., Freetly H. (2003). Thermoregulatory responses of feeder cattle. J. Therm. Biol., 28: 149–157.
  48. Brügemann K., Gernand E., König von Borstel U., König S. (2012). Defining and evaluating heat stress thresholds in different dairy cow production systems. Arch. Anim. Breed., 55: 13–24.
  49. Buffington D.E., Collazo-Arocho A., Canton G.H., Pitt D., W Thatcher.W., Collier R.J. (1981). Black globe humidity index (BGHI) as comfort equation for dairy cows. Trans. ASABE., 24: 711–714.
  50. Canovas A., Rincon G., Islas-Trejo A., Wickramasinghe S., Medrano J. F. (2010). SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm. Genome, 21: 592– 598.
  51. Cardot V., Le Roux Y., Jurjanz S. (2008). Drinking behavior of lactating dairy cows and prediction of their water intake. J. Dairy Sci., 91: 2257–2264.
  52. Cartwright S.L., Malchiodi F., Thompson-Crispi K., Miglior F., Mallard B.A. (2017). Short communication: prevalence of digital dermatitis in Canadian dairy cattle classified as high, average, or low antibody- and cell-mediated immune responders. J. Dairy Sci., 100: 8409–8413.
  53. Cartwright S.L., McKechnie1 M., Schmied J, Livernois A.M., Mallard B.A. (2021). Effect of invitro heat stress challenge on the function of blood mononuclear cells from dairy cattle ranked as high, average and low immune responders. BMC Vet. Res., 17: 233.
  54. Cartwright S.L., Schmied J., Karrow N., Mallard B.A. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Front. Vet. Sci., 10: 1198697.
  55. Cena K., Monteith J.L. (1975). Transfer processes in animal coats. I. Radiative transfer. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Soc., 188: 377–393.
  56. Cheruiyot E.K., Haile-Mariam M., Cocks B.G., Pryce J.E. (2022). Improving genomic selection for heat tolerance in dairy cattle: current opportunities and future directions. Front. Gen., 13: 894067.
  57. Christison G.I., Johnson H.D. (1972). Cortisol turnover in heat-stressed cows. J. Anim. Sci., 35: 1005–1010.
  58. Coimbra P.A.D., Machado Filho L.C.P., Hötzel M.J. (2012). Effects of social dominance, water trough location and shade availability on drinking behaviour of cows on pasture. Appl. Anim. Behav. Sci., 139: 175–182.
  59. Collier R.J., Beede D.K., Thatcher W.W., Israel L.A., Wilcox C.J. (1982). Influences of environment and its modification on dairy animal health and production. J. Dairy Sci., 65: 2213–2227.
  60. Collier R.J., Collier J.L., Rhoads R.P., Baumgard L.H. (2008). Invited review: genes involved in the bovine heat stress response. J. Dairy Sci., 91: 445–454.
  61. Collier R.J., Dahl G.E., VanBaale M.J. (2006). Major advances associated with environmental effects on dairy cattle. J. Dairy Sci., 89: 1244–1253.
  62. Collier R.J., Eley R.M., Sharma A.K., Pereira R.M., Buffington D.E. (1981). Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. J. Dairy Sci., 64: 844–849.
  63. Collier R.J., Stiening C.M., Pollard B.C., VanBaale M.J., Baumgard L.H., Gentry P.C., Coussens P.M. (2006 b). Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J. Anim. Sci., 84 Suppl: E1–13.
  64. Collier R.J., Baumgard L.H., Zimbelman R.B., Xiao Y. (2019). Heat stress: physiology of acclimation and adaptation. Anim. Front., 9: 12–19.
  65. Collier R.J., Gebremedhin K.G. (2015). Thermal biology of domestic animals. Annu. Rev. Anim. Biosci., 3: 513–532.
  66. Collier R.J., Zimbelman R.B., Rhoads R.P., Rhoads M.L., Baumgard L.H. (2011). A re- evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. 113–126 in Proc. West. Dairy Manag. Conf., Reno, NV.
  67. Contreras G.A., Thelen K., Schmidt S.E., Strieder-Barboza C., Preseault C.L., Raphael W., Kiupel M., Caron J., Lock A.L. (2016). Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance. J. Dairy Sci., 99: 10009– 10021.
  68. Cook N.B., Mentink R.L., Bennett T.B., Burgi K. (2007). The effect of heat stress and lameness on time budgets of lactating dairy cows. J. Dairy Sci., 90: 1674–1682.
  69. Cook N.B., Nordlund K.V. (2009). The influence of the environment on dairy cow behavior, claw health and herd lameness dynamics. Vet. J., 179: 360–369.
  70. Coppock C.E. (1985). Energy nutrition and metabolism of the lactating dairy cow1. J. Dairy Sci., 68: 3403–3410.
  71. Coppock C.E., Grant P.A., Portzer S.J., Charles D.A., Escobosa A. (1982). Lactating dairy cow responses to dietary sodium, chloride, and bicarbonate during hot. Weather. J. Dairy Sci., 65: 566–576.
  72. Corazzin M., Saccà E., Lippe G., Romanzin A., Foletto V., Da Borso F., Piasentier E. (2020). Effect of heat stress on dairy cow performance and on expression of protein metabolism genes in mammary cells. Animals (Basel), 10: 2124.
  73. Correa-Calderón A., Avendaño-Reyes L., López-Baca M., Macías-Cruz U. (2022). Heat stress in dairy cattle with emphasis on milk production and feed and water intake habits. Review. Rev. Mex. Cien. Pecu., 13: 488–509.
  74. Cumming T., Levayer R. (2024). Toward a predictive understanding of epithelial cell death. In: Seminars in cell and developmental biology. Academic Press, 156: 44–57.
  75. Dahl G.E., Tao S., Laporta J. (2020). Heat stress impacts immune status in cows across the life cycle. Front. Vet. Sci., 7: 1–15.
  76. Das R., Sailo L., Verma N., Bharti P., Saikia J., Imtiwati A. (2016). Impact of heat stress on health and performance of dairy animals: a review. Vet. World., 9: 260.
  77. Dash S., Chakravarty A.K., Singh A., Upadhyay A., Singh M., Yousuf S. (2016). Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Vet. World, 9: 235–244.
  78. De Rensis F., Garcia-Ispierto I., López-Gatius F. (2015). Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows. Theriogenology, 84: 659–666.
  79. Dikmen S., Alava E., Pontes E., Fear J.M., Dikmen B.Y., Olson T.A., Hansen P.J. (2008). Differences in thermoregulatory ability between slick-haired and wild-type lactating Holstein cows in response to acute heat stress. J. Dairy Sci., 91: 3395–3402.
  80. Dikmen S., Hansen P.J. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci., 92: 109– 116.
  81. do Amaral B.C., Connor E.E., Tao S., Hayen M.J., Bubolz J.W., Dahl G.E. (2011). Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J. Dairy Sci., 94: 86–96.
  82. do Amaral B.C., Connor E.E., Tao S., Hayen M.J., Bubolz J.W., Dahl G.E. (2009). Heat-stress abatement during the dry period: does cooling improve transition into lactation? J. Dairy Sci., 92: 5988–5999.
  83. do Amaral B.C., Connor E.E., Tao S., Hayen M.J., Bubolz J.W., Dahl G.E. (2010). Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domes. Anim. Endocrinol., 38: 38–45.
  84. do Nascimento Barreto A., Jacintho M.A.C., Barioni Junior W., Pereira A.M.F., Nanni Costa L., Zandonadi Brandão F., Rossetto Garcia A. (2024). Adaptive integumentary features of beef cattle raised on afforested or non-shaded tropical pastures. Sci. Rep., 14: 16951.
  85. Dos Santos M.M., Souza-Junior J.B.F., Dantas M.R.T., de Macedo Costa L.L. (2021). An updated review on cattle thermoregulation: physiological responses, biophysical mechanisms, and heat stress alleviation pathways. Environ. Sci. Poll. Res., 28: 30471– 30485.
  86. Dourmad J.-Y., Le Velly V., Gourdine J.-L., Renaudeau D. (2022). Effect of ambient temperature in lactating sows, a meta-analysis and simulation approach in the context of climate change. Anim. – Open Space, 1: 100025.
  87. Dovolou E., Giannoulis, T., Nanas I., Amiridis G.S. (2023). Heat stress: A serious disruptor of the reproductive physiology of dairy cows. Animals, 13: 1846.
  88. Dowling D. (1955). The hair follicle and apocrine gland populations of Zebu (Bos indicus L.) and Shorthorn (B. taurus L.) cattle skin. Aust. J. Agri. Res., 6: 645–654.
  89. Drovers (2015). Prepare for heat stress in cattle. Accessed October 11, 2019. https://www.drovers.com/article/prepare-heat-stress-cattle.
  90. Elvinger F., Natzke R.P., Hansen P.J. (1992). Interactions of heat stress and bovine somatotropin affecting physiology and immunology of lactating cows. J. Dairy Sci., 75: 449–462.
  91. Escobosa A., Coppock C.E., Rowe L.D., Jenkins W.L., Gates C.E. (1984). Effects of dietary sodium bicarbonate and calcium chloride on physiological responses of lactating dairy cows in hot weather. J. Dairy Sci., 67: 574–584.
  92. Fabris T.F., Laporta J., Corra F.N., Torres Y.M., Kirk D.J., McLean D.J., Chapman J.D., Dahl G.E. (2017). Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows. J. Dairy Sc., 100: 6733–6742.
  93. Fabris T.F., Laporta J., Skibiel A.L., Corra F.N., Senn B.D., Wohlgemuth S.E., Dahl G.E. (2019). Effect of heat stress during early, late, and entire dry period on dairy cattle. J. Dairy Sc., 102: 5647–5656.
  94. Fan C., Su D., Tian H., Hu R.-T., Ran L., Yang Y., Su Y.-J., Cheng J.-B. (2019). Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows. J. Integ. Agri., 18: 2844–2853.
  95. Farming Independent. (2018). Everything you need to know about heat stress in cattle. Accessed October 11, 2019. https://www.independent.ie/business/farming/beef/beef-advice/everything-you-need-to-know-about-heat-stress-in-cattle-37095069.html.
  96. Ferreira F.C., De Vries A. (2015). Effects of season and herd milk volume on somatic cell counts of Florida dairy farms. J. Dairy Sc., 98: 4182–4197.
  97. Ferreira F.C., Gennan R.S., Dahl G.E., De Vries A. (2016). Economic feasibility of cooling dry cows across the United States. J. Dairy Sci., 99: 9931–9941.
  98. Finch V.A. (1986). Body temperature in beef cattle: its control and relevance to production in the tropics. J. Anim. Sci., 62: 531–542.
  99. Finch V.A., Bennett I.L., Holmes C.R. (2009). Sweating response in cattle and its relation to rectal temperature, tolerance of sun and metabolic rate. J. Agr. Sci., 99: 479–487.
  100. Fleming K., Thompson-Crispi K.A., Hodgins D.C., Miglior F., Corredig M., Mallard B.A. (2016). Short communication: variation of total immunoglobulin G and β-lactoglobulin concentrations in colostrum and milk from Canadian Holsteins classified as high, average, or low immune responders. J. Dairy Sci., 99: 2358–2363.
  101. Foroushani S., Amon T. (2022). Thermodynamic assessment of heat stress in dairy cattle: lessons from human biometeorology. Int. J. Biometeorol., 66: 1811–1827.
  102. Fregonesi J.A., Tucker C.B., Weary D.M. (2007). Overstocking reduces lying time in dairy cows. J. Dairy Sci., 90: 3349–3354.
  103. Freitas P.H., Wang Y., Yan P., Oliveira H.R., Schenkel F.S., Zhang Y., Brito L.F. (2021). Genetic diversity and signatures of selection for thermal stress in cattle and other two Bos species adapted to divergent climatic conditions. Front. Gen., 12: 604823.
  104. Fu X., Liu H., Liu J., DiSanto M.E., Zhang X. (2022). The role of heat shock protein 70 subfamily in the hyperplastic prostate: from molecular mechanisms to therapeutic opportunities. Cells, 11: 2052.
  105. Fuquay J.W. (1981). Heat stress as it affects animal production. J. Anim. Sci., 52: 164–174.
  106. Galán E., Llonch P., Villagrá A., Levit H., Pinto S., del Prado A. (2018). A systematic review of non-productivity related animal-based indicators of heat stress resilience in dairy cattle. PLoS One, 13:e0206520.
  107. Galindo F., Broom D.M. (2000). The relationships between social behaviour of dairy cows and the occurrence of lameness in three herds. Res. Vet. Sci., 69: 75–79.
  108. García-Ispierto I., López-Gatius F., Santolaria P., Yániz J.L., Nogareda C., López-Béjar M., De Rensis F. (2006). Relationship between heat stress during the peri-implantation period and early fetal loss in dairy cattle. Theriogenology, 65: 799–807.
  109. Gaughan J., Lacetera N., Valtorta S.E., Khalifa H.H., Hahn L., Mader T. (2009). Response of domestic animals to climate challenges. In: Biometeorology for adaptation to climate variability and change. Ebi K.L., Burton I., McGregor G.R. (eds). Springer Netherlands, Dordrecht, pp. 131–170.
  110. Gengler W.R., Martz F.A., Johnson H.D., Hahn L. (1970). Method for altering intraruminal temperature in cattle. J. Dairy Sci., 53: 484–485.
  111. Glossary of terms for thermal physiology (1987). Pflugers Arch., 410: 567–587.
  112. Gonzalez-Rivas P.A., Chauhan S.S., Ha M., Fegan N., Dunshea F.R., Warner R.D. (2020). Effects of heat stress on animal physiology, metabolism, and meat quality: a review. Meat Sci., 162: 108025.
  113. Gross J.J. (2022). Limiting factors for milk production in dairy cows: perspectives from physiology and nutrition. J. Anim. Sci., 100: skac044.
  114. Guerriero V., Raynes D.A. (1990). Synthesis of heat stress proteins in lymphocytes from livestock. J. Anim. Sci., 68: 2779–2783.
  115. Hadley G.L., Wolf C.A., Harsh S.B. (2006). Dairy cattle culling patterns, explanations, and implications. J. Dairy Sci., 89: 2286–2296.
  116. Hahn G.L. (1999). Dynamic responses of cattle to thermal heat loads. J. Anim. Sci., 77: 10–20.
  117. Hahn L., Bond T.E., Kelly C.F. (1963). Walls influence interior radiant environment of livestock shelters for shade. Calif. Agric., 17: 10–11.
  118. Hammami H., Bormann J., M’hamdi N., Montaldo H.H., Gengler N. (2013). Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci., 96: 1844–1855.
  119. Hanafi E.M., Korany R., Tawfeek M., Hozyen H.F., El-Nattat W.S., Ramadan M.M., Mohammed D. (2023). Effect of frankincense (boswellia carterii) on animal reproductive performance. Egypt. J. Chem., 66: 213–223.
  120. Hannan F.M., Leow M.K., Lee J.K., Kovats S., Elajnaf T., Kennedy S.H., Thakker R.V. (2024). Endocrine effects of heat exposure and relevance to climate change. Nat. Rev. Endocrinol., 1–12.
  121. Hansen P.J. (1990). Effects of coat colour on physiological responses to solar radiation in Holsteins. Vet. Record, 127: 333–334.
  122. Hansen P.J. (2007). Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology, 68S: S242–S249.
  123. Hansen P.J. (2013). Antecedents of mammalian fertility: lessons from the heat stressed cow regarding the importance of oocyte competence for fertilization and embryonic development. Anim. Front., 3: 34–38.
  124. Hill D.L., Wall E. (2017). Weather influences feed intake and feed efficiency in a temperate climate. J. Dairy Sci., 100: 2240–2257.
  125. Holter J.B., West J.W., McGilliard M.L., Pell A.N. (1996). Predicting ad libitum dry matter intake and yields of Jersey cows. J. Dairy Sci., 79: 912–921.
  126. Horowitz M. (2001). Heat acclimation: phenotypic plasticity and cues to the underlying molecular mechanisms. J. Thermal Biol., 26: 357–363.
  127. Horowitz M. (2002). From molecular and cellular to integrative heat defense during exposure to chronic heat. Comparative biochemistry and physiology. Part A, Mole. Integ. Physiol., 131: 475–483.
  128. Hu H., Wang J., Gao H., Li S., Zhang Y., Zheng N. (2016). Heat-induced apoptosis and gene expression in bovine mammary epithelial cells. Anim. Product. Sci., 56: 918– 926.
  129. Idris M., Sullivan M., Gaughan J.B., Keeley T., Phillips C.J.C. (2024). Faecal cortisol metabolites, body temperature, and behaviour of beef cattle exposed to a heat load. Animal, 18: 101112.
  130. Idris M., Uddin J., Sullivan M., McNeill D.M., Phillips C.J. (2021). Non-invasive physiological indicators of heat stress in cattle. Animals, 11: 71.
  131. Igono M.O., Bjotvedt G., Sanford-Crane H.T. (1992). Environmental profile and critical temperature effects on milk production of Holstein cows in desert climate. Int. J. Biometeorol., 36: 77–87.
  132. Ingraham R.H., Stanley R.W., Wagner W.C. (1979). Seasonal effects of tropical climate on shaded and nonshaded cows as measured by rectal temperature, adrenal cortex hormones, thyroid hormone, and milk production. Am. J. Vet. Res., 40: 1792–1797.
  133. IPCC (2007). Intergovermental Panel on Climate Change. The Physical Science Basis. https://doi.org/10.1256/wea.58.04.
  134. Ito K., von Keyserlingk M.A.G., LeBlanc S.J., Weary D.M. (2010). Lying behavior as an indicator of lameness in dairy cows. J. Dairy Sci., 93: 3553–3560.
  135. Jiang F., Chang G., Li Z., Abouzaid M., Du X., Hull J.J., Lin Y. (2021). The HSP/co-chaperone network in environmental cold adaptation of Chilo suppressalis. Int. J. Biol. Macromol., 187: 780–788.
  136. Johnson H.D. (1987). Bioclimatology and the Adaptation of Livestock. Elsevier.
  137. Johnson H.D., Vanjonack W.J. (1976). Effects of environmental and other stressors on blood hormone patterns in lactating animals. J. Dairy Sci., 59: 1603–1617.
  138. Kadzere C.T., Murphy M.R., Silanikove N., Maltz E. (2002). Heat stress in lactating dairy cows: a review. Livest. Product. Sci., 77: 59–91.
  139. Kellogg D.L.J., Crandall C.G., Liu Y., Charkoudian N., Johnson J.M. (1998). Nitric oxide and cutaneous active vasodilation during heat stress in humans. J. Appl. Physiol., 85: 824–829.
  140. Kendall P.E., Nielsen P.P., Webster J.R., Verkerk G.A., Littlejohn R.P., Matthews L.R. (2006). The effects of providing shade to lactating dairy cows in a temperate climate. Livest. Sci., 103: 148–157.
  141. Kendall P.E., Verkerk G.A., Webster J.R., Tucker C.B. (2007). Sprinklers and shade cool cows and reduce insect-avoidance behavior in pasture-based dairy systems. J. Dairy Sci., 90: 3671–3680.
  142. Kibler H.H., Brody S. (1952 b). Environmental physiology with special reference to domestic animals: Relative efficiency of surface evaporative, respiratory evaporative, and non-evaporative cooling in relation to heat production in Jersey, Holstein, Brown Swiss and Brahman cattle. University of Missouri, College of Agriculture, Agricultural Experiment Station.
  143. Kibler H., Brody S. (1952 a). Relative efficiency of surface evaporative, respiratory evaporative, and non-evaporative cooling in relation to heat production in Jersey, Holstein, Brown Swiss and Brahman cattle. Mo. Agr. Exp. Sta. Res. Bull., 497.
  144. Kovačić Đ., Lončarić Z., Jović J., Samac D., Popović B., Tišma M. (2022). Digestate management and processing practices: a review. Appl. Sci., 12: 9216.
  145. Kregel K.C. (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. (Bethesda, Md.: 1985), 92: 2177–2186.
  146. Krishnan G., Silpa M.V., Sejian V. (2023). environmental physiology and thermoregulation in farm animals. In: Textbook of veterinary physiology Singapore. Springer Nature Singapore., pp. 723–749.
  147. Lacetera N., Bernabucci U., Scalia D., Ronchi B. Kuzminsky, G., Nardone A. (2005). Lymphocyte functions in dairy cows in hot environment. Int. J. Biometeorol., 50: 105– 110.
  148. Lahondère C. (2023). Recent advances in insect thermoregulation. J. Experim. Biol., 226: jeb245751.
  149. Ledgerwood D.N., Winckler C., Tucker C.B. (2010). Evaluation of data loggers, sampling intervals, and editing techniques for measuring the lying behavior of dairy cattle. J. Dairy Sci., 93: 5129–5139.
  150. Linvill D.E., Pardue F.E. (1992). Heat stress and milk production in the South Carolina coastal plains. J. Dairy Sci., 75: 2598–2604.
  151. Liu C., Lin J.Z., Wang Y., Tian Y., Zheng H.P., Zhou Z.K., Liu X.M. (2023). The protein phosphatase PC1 dephosphorylates and deactivates CatC to negatively regulate H2O2 homeostasis and salt tolerance in rice. Plant Cell, 35: 3604–3625.
  152. López-Gatius F., López-Béjar M., Fenech M., Hunter R.H.F. (2005). Ovulation failure and double ovulation in dairy cattle: risk factors and effects. Theriogenology, 63: 1298–1307.
  153. Lourencon R.V., Patra A.K., Ribeiro L.P., Puchala R., Wang W., Gipson T.A., Goetsch A.L. (2024). Effects of the level and source of dietary physically effective fiber on feed intake, nutrient utilization, heat energy, ruminal fermentation, and milk production by Alpine goats. Anim. Nutr., 17: 312–324.
  154. Macfarlane W., Morris R., Howard B. (1958). Heat and water in tropical Merino sheep. Aust. J. Agri. Res., 9: 217–228.
  155. Mader T.L., Davis M.S., Brown-Brandl T. (2006). Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci., 84: 712–719.
  156. Madkour M., Aboelenin M.M., Younis E., Mohamed M.A., Hassan H., Alagawany M., Shourrap M. (2020). Hepatic acute-phase response, antioxidant biomarkers and DNA fragmentation of two rabbit breeds subjected to acute heat stress. Ital. J. Anim. Sci., 19: 1558–1566.
  157. Madkour M., Salman F.M., El-Wardany I., Abdel-Fattah S.A., Alagawany M., Hashem N.M., Abdelnour S.A., El-Kholy M.S., Dhama K. (2022). Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J. Therm. Biol., 103: 103169.
  158. Marai I.F.M., El-Darawany A.A., Fadiel A., Abdel-Hafez M.A.M. (2007). Physiological traits as affected by heat stress in sheep – a review. Small Rumin. Res., 71: 1–12.
  159. McDowell R.E., Hooven N.W., Camoens J.K. (1976). Effect of climate on performance of Holsteins in first lactation. J. Dairy Sci., 59: 965–971.
  160. McKechnie A.E. (2022). Regulation of body temperature: patterns and processes. In: Sturkie’s avian physiology. Academic Press, pp. 1231–1264.
  161. Medrano J., Rincon G., Islas-Trejo A. (2010). Comparative analysis of bovine milk and mammary gland transcriptome using RNA-Seq. Proc. 9th World Congress on Genetics applied to Livestock Production, Leipzig, Germany.
  162. Mehla K., Magotra A., Choudhary J., Singh A.K., Mohanty A.K., Upadhyay R.C., Khan F. (2014). Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle. Gene, 533: 500–507.
  163. Meyer U., Everinghoff M., Gädeken D., Flachowsky G. (2004). Investigations on the water intake of lactating dairy cows. Livest. Prod. Sci., 90: 117–121.
  164. Milam K.Z., Coppock C.E., West J.W., Lanham J.K., Nave D.H., Labore J.M., Stermer R.A., Brasington C.F. (1986). Effects of drinking water temperature on production responses in lactating Holstein cows in summer. J. Dairy Sci., 69: 1013–1019.
  165. Miller-Cushon E.K., Dayton A.M., Horvath K.C., Monteiro A.P.A., Weng X., Tao S. (2019). Effects of acute and chronic heat stress on feed sorting behaviour of lactating dairy cows. Animal, 13: 2044–2051.
  166. Mohammed D.M., Abdelgawad M.A., Ghoneim M.M., Alhossan A., Al-Serwi R.H., Farouk A. (2024). Impact of some natural and artificial sweeteners consumption on different hormonal levels and inflammatory cytokines in male rats: in vivo and in silico studies. ACS Omega, 28: 30364–30380.
  167. Mohammed D.M., Abdelgawad M.A., Ghoneim M.M., El-Sherbiny M., Mahdi W.A., Alshehri S., Farouk A. (2023). Effect of nano-encapsulated food flavorings on streptozotocin-induced diabetic rats. Food Funct., 14: 8814–8828.
  168. Mohammed D.M., Elsayed N., Abou Baker D.H., Ahmed K.A., Sabry B.A. (2022). Bioactivity and antidiabetic properties of Malva parviflora L. leaves extract and its nano-formulation in streptozotocin-induced diabetic rats. Heliyon, 8: e12027.
  169. Moore S.S., Costa A., Penasa M., Callegaro S., De Marchi M. (2023). How heat stress conditions affect milk yield, composition, and price in Italian Holstein herds. J. Dairy Sci., 106: 4042–4058.
  170. Mooring M.S., Hart B.L. (1992). Animal grouping for protection from parasites: Selfish herd and encounter-dilution effects. Behaviour., 123: 173–193.
  171. Moretti R., Biffani S., Chessa S., Bozzi R. (2017). Heat stress effects on Holstein dairy cows’ rumination. Animal, 11: 2320–2325.
  172. Munksgaard L., Jensen M.B., Pedersen L.J., Hansen S.W., Matthews L. (2005). Quantifying behavioural priorities – effects of time constraints on behaviour of dairy cows, Bos taurus. Appl. Anim. Behav. Sci., 92: 3–14.
  173. Murphy M.R. (1992). Water metabolism of dairy cattle. J. Dairy Sci., 75: 326–333.
  174. Murphy M.R., Davis C.L., McCoy G.C. (1983). Factors affecting water consumption by Holstein cows in early lactation. J. Dairy Sci., 66: 35–38.
  175. Mylostyvyi R., Lacetera N., Amadori M., Sejian V., Souza-Junior J.B.F., Hoffmann G. (2024). The autumn low milk yield syndrome in Brown Swiss cows in continental climates: hypotheses and facts. Vet. Res. Commun., 48: 203–213.
  176. Nardone A. (1998). Thermoregulatory capacity among selection objectives in dairy cattle in hit environment. Zootec. Nutri. Anim., 24: 297–308.
  177. Nardone A., Ronchi B., Lacetera N., Bernabucci U. (2006). Climatic effects on productive traits in livestock. Vet. Res. Commun., 30: 75–81.
  178. Nasr M.A.F., El-Tarabany M.S. (2017). Impact of three THI levels on somatic cell count, milk yield and composition of multiparous Holstein cows in a subtropical region. J. Therm. Biol., 64: 73–77.
  179. National Research Council (1989). Nutrient requirements of dairy cattle. 6th rev. ed. National Academy Press, Washington, DC.
  180. Navas-Martín M.Á., Cuerdo-Vilches T., López-Bueno J.A., Díaz J., Linares C., Sánchez-Martínez G. (2024). Human adaptation to heat in the context of climate change: A conceptual framework. Environ. Res., 252: 118803.
  181. Neves S.F., Silva M.C., Miranda J.M., Stilwell G., Cortez P.P. (2022). Predictive models of dairy cow thermal state: a review from a technological perspective. Vet. Sci., 9: 416.
  182. Nguyen T.T.T., Bowman P.J., Haile-Mariam M., Pryce J.E., Hayes B.J. (2016). Genomic selection for tolerance to heat stress in Australian dairy cattle. J. Dairy Sci., 99: 2849– 2862.
  183. Nikanorova A.A., Barashkov N.A., Pshennikova V.G., Teryutin F.M., Nakhodkin S.S., Solovyev A.V., Fedorova S.A. (2023). A systematic review and meta-analysis of free triiodothyronine (FT3) levels in humans depending on seasonal air temperature changes: is the variation in FT3 levels related to nonshivering thermogenesis? Int. J. Mole. Sci., 24: 14052.
  184. Nordlund K.V., Strassburg P., Bennett T.B., Oetzel G.R., Cook N.B. (2019). Thermodynamics of standing and lying behavior in lactating dairy cows in freestall and parlor holding pens during conditions of heat stress. J. Dairy Sci., 102: 6495–6507.
  185. NRC (1971). A guide to environmental research on animals. Natl. Acad. Sci., Washington, DC.
  186. NRC (1981). Effect of environment on nutrient requirement of domestic animals. Natl. Acad. Sci., Washington, DC.
  187. Numata T., Kiyonaka S., Kato K., Takahashi N., Mori Y. (2011). Activation of TRP channels in mammalian systems. In: TRP Channels, Zhu M. (ed.). CRC Press/Taylor and Francis, Boca Raton, FL, pp. 43–90.
  188. Ominski K.H., Kennedy A.D., Wittenberg K.M., Moshtaghi Nia S.A. (2002). Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress. J. Dairy Sci., 85: 730–737.
  189. Ouellet V., Cabrera V.E., Fadul-Pacheco L., Charbonneau É. (2019). The relationship between the number of consecutive days with heat stress and milk production of Holstein dairy cows raised in a humid continental climate. J. Dairy Sci., 102: 8537–8545.
  190. Owens F.N., Secrist D.S., Hill W.J., Gill D.R. (1998). Acidosis in cattle: A review. J. Anim. Sci., 76: 275–286.
  191. Page T.J., Sikder D., Yang L., Pluta L., Wolfinger R.D., Kodadek T., Thomas R.S. (2006). Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mole. BioSys., 2: 627–639.
  192. Palacio S., Bergeron R., Lachance S., Vasseur E. (2015). The effects of providing portable shade at pasture on dairy cow behavior and physiology. J. Dairy Sci., 98: 6085– 6093.
  193. Pappenheimer J.R., Fregly M.J., Blatties C.M., Society A.P. (1996). Handbook of physiology: Environmental physiology: Oxford University Press.
  194. Polder D., Van Hove M. (1971). Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B., 4: 3303–3314.
  195. Pollott G.E., Wilson K., Jerram L., Fowkes R.C., Lawson C. (2014). Technical note: a noninvasive method for measuring mammary apoptosis and epithelial cell activation in dairy animals using microparticles extracted from milk. J. Dairy Sci., 97: 5017–5022.
  196. Polsky L., von Keyserlingk M.A.G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci., 100: 8645–8657.
  197. Pontiggia A., Münger A., Eggerschwiler L., Holinger M., Stucki D., Ammer S., Keil N.M. (2024). Behavioural responses related to increasing core body temperature of grazing dairy cows experiencing moderate heat stress. Animal, 18: 101097.
  198. Powers M.V., Workman P. (2007). Inhibitors of the heat shock response: Biology and pharmacology. FEBS Lett., 581: 3758–3769.
  199. Purohit P., Gupta J., Chaudhri J., Bhatt T., Pawar M., Srivastava A., Patel M. (2020). Effect of heat stress on production and reproduction potential of dairy animals vis-a-vis buffaloes. Int. J. Livest. Res., 10: 1–23.
  200. Purwanto B.P., Abo Y., Sakamoto R., Furumoto F., Yamamoto S. (1990). Diurnal patterns of heat production and heart rate under thermoneutral conditions in Holstein Friesian cows differing in milk production. J. Agri. Sci., 114: 139–142.
  201. Radostits O.M., Gay C.C., Hinchcliff K.W., Constable P.D. (2007). A text book of the diseases of cattle, sheep, pigs, goats and horses. Vet. Med., 10th Ed.
  202. Ravagnolo O., Misztal I. (2000). Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci., 83: 2126–2130.
  203. Ravagnolo O., Misztal I., Hoogenboom G. (2000). Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci., 83: 2120–2125.
  204. Renaudeau D., Collin A., Yahav S., de Basilio V., Gourdine J.L., Collier R.J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6: 707–728.
  205. Rhoads M.L., Kim J.W., Collier R.J., Crooker B.A., Boisclair Y.R., Baumgard L.H., Rhoads R.P. (2010). Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. J. Dairy Sci., 93: 170–179.
  206. Rhoads M.L., Rhoads R.P., VanBaale M.J., Collier R.J., Sanders S.R., Weber W.J., Crooker B.A., Baumgard L.H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci., 92: 1986–1997.
  207. Rhoads R.P., La Noce A.J., Wheelock J.B., Baumgard L.H. (2011). Short communication: Alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration. J. Dairy Sci., 94: 1917–1921.
  208. Ribeiro B.P.V.B., Junior T.Y., de Oliveira D.D., de Lima R.R., Zangeronimo M.G. (2020). Thermoneutral zone for laying hens based on environmental conditions, enthalpy and thermal comfort indexes. J. Therm. Biol., 93: 102678.
  209. Richards J.I. (1985). Milk production of friesian cows subjected to high daytime temperatures when allowed food eitherad lib or at night-time only. Trop. Anim. Health Prod., 17: 141– 152.
  210. Richter K., Haslbeck M., Buchner J. (2010). The heat shock response: life on the verge of death. Mol Cell., 40: 253–66.
  211. Robinson J., Kyriazis C.C., Yuan S.C., Lohmueller K.E. (2023). Deleterious variation in natural populations and implications for conservation genetics. Ann. Rev. Anim. Biosci., 11: 93– 114.
  212. Roelofs J., López-Gatius F., Hunter R.H.F., van Eerdenburg F.J.C.M., Hanzen C. (2010). When is a cow in estrus? Clinical and practical aspects. Theriogenology, 74: 327–344.
  213. Ronchi B., Stradaioli G., Verini Supplizi A., Bernabucci U., Lacetera N., Accorsi P.A., Nardone A., Seren E. (2001). Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17β, LH, FSH, prolactin and cortisol in Holstein heifers. Livest. Prod. Sci., 68: 231–241.
  214. Rutten C.J., Kamphuis C., Hogeveen H., Huijps K., Nielen M., Steeneveld W. (2017). Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows. Comput. Electron. Agri., 132: 108–118.
  215. Saeed M., Abbas G., Alagawany M., Kamboh A.A., Abd El-Hack M.E., Khafaga A.F., Chao S. (2019). Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol., 84: 414–425.
  216. Sakatani M., Balboula A.Z., Yamanaka K., Takahashi M. (2012). Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black cow. Anim. Sci. J., 83: 394–402.
  217. Salak-Johnson J.L., McGlone J.J. (2007). Making sense of apparently conflicting data: stress and immunity in swine and cattle. J Anim Sci., 85(13 Suppl): 81–88.
  218. Salama A.A.K., Duque M., Wang L., Shahzad K., Olivera M., Loor J.J. (2019). Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J. Dairy Sci., 102: 1–12.
  219. Salama M., Mohammed D.M., Fahmy K., Al-Senosy N.K., Ebeed N.M., Farouk A. (2023). Evaluation of the cytotoxicity and genotoxicity potential of synthetic diacetyl food flavoring in silico, in vivo, and in vitro. Food Chem. Toxicol., 178: 113923.
  220. Samali A., Orrenius S. (1998). Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaper., 3: 228–236.
  221. Sammad A., Wang Y.J., Umer S., Lirong H., Khan I., Khan A., Wang Y. (2020). Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals, 10: 793.
  222. Santolaria P., López-Gatius F., García-Ispierto I., Bech-Sàbat G., Angulo E., Carretero T., Sánchez-Nadal J.A., Yániz J. (2010). Effects of cumulative stressful and acute variation episodes of farm climate conditions on late embryo/early fetal loss in high producing dairy cows. Int. J. Biometeorol., 54: 93–98.
  223. Sayed Y., Hassan M., Salem H.M., Al-Amry K., Eid G.E. (2023). Prophylactic influences of prebiotics on gut microbiome and immune response of heat-stressed broiler chickens. Sci. Rep., 13: 1–17.
  224. Schairer D.O., Chouake J.S., Nosanchuk J.D., Friedman A.J. (2012). The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence, 3: 271–279.
  225. Schirmann K., von Keyserlingk M.A.G., Weary D.M., Veira D.M., Heuwieser W. (2009). Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci., 92: 6052–6055.
  226. Schmidt-Nielsen K. (1964). Desert animals: physiological problems of heat and water. Clarendon Press.
  227. Schneider P.L., Beede D.K., Wilcox C.J. (1988). Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments. J. Anim. Sci., 66: 112–125.
  228. Schütz K.E., Cox N.R., Matthews L.R. (2008). How important is shade to dairy cattle? Choice between shade or lying following different levels of lying deprivation. Appl. Anim. Behav. Sci., 114: 307–318.
  229. Schütz K.E., Rogers A.R., Cox N.R., Tucker C.B. (2009). Dairy cows prefer shade that offers greater protection against solar radiation in summer: Shade use, behaviour, and body temperature. Appl. Anim. Behav. Sci., 116: 28–34.
  230. Schütz K.E., Rogers A.R., Poulouin Y.A., Cox N.R., Tucker C.B. (2010). The amount of shade influences the behavior and physiology of dairy cattle. J. Dairy Sci., 93: 125–133.
  231. Sejian V., Bhatta R., Gaughan J.B., Dunshea F.R., Lacetera N. (2018). Review: adaptation of animals to heat stress. Animal, 12: S431–444.
  232. Shalit U., Maltz E., Silanikove N., Berman A. (1991). Water, sodium, potassium, and chlorine metabolism of dairy cows at the onset of lactation in hot weather. J. Dairy Sci., 74: 1874– 1883.
  233. Sharma A.K., Rodriguez L.A., Mekonnen G., Wilcox C.J., Bachman K.C., Collier R.J. (1983). Climatological and genetic effects on milk composition and yield. J. Dairy Sci., 66: 119– 126.
  234. Shephard R.W., Maloney S.K. (2023). A review of thermal stress in cattle. Aust. Vet. J., 101: 417–429.
  235. Shwartz G., Rhoads M.L., VanBaale M.J., Rhoads R.P., Baumgard L.H. (2009). Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J. Dairy Sci., 92: 935–942.
  236. Silanikove N. (1989). Role of rumen and saliva in the homeostatic response to rehydration in cattle. Amer. J. Physiol., 256: 816–821.
  237. Silanikove N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci., 67: 1–18.
  238. Skibiel A.L., Zachut M., do Amaral B.C., Levin Y., Dahl G.E. (2018). Liver proteomic analysis of postpartum Holstein cows exposed to heat stress or cooling conditions during the dry period. J. Dairy Sci., 101: 705–716.
  239. Smith D.L., Smith T., Rude B.J., Ward S.J. (2013). Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci., 96: 3028–3033.
  240. Smith S.M., Vale W.W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci., 8: 383–395.
  241. Smith V.G., Hacker R.R., Brown R.G. (1977). Effect of alterations in ambient temperature on serum prolactin concentration in steers 1 ,2. J. Anim. Sci., 44: 645–649.
  242. Soliman T.N., Karam-Allah A.A.K., Abo-Zaid E.M., Mohammed D.M. (2024). Efficacy of nanoencapsulated Moringa oleifera L. seeds and Ocimum tenuiflorum L. leaves extracts incorporated in functional soft cheese on streptozotocin-induced diabetic rats. Phytomed. Plus, 100598.
  243. Soliman T.N., Mohammed D.M., El-Messery T.M., Elaaser M., Zaky A.A., Eun J.B., El-Said M.M. (2022). Microencapsulation of plant phenolic extracts using complex coacervation incorporated in ultrafiltered cheese against AlCl3-induced neuroinflammation in rats. Front. Nutr., 9: 929977.
  244. Soriani N., Panella G., Calamari L. (2013). Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci., 96: 5082–5094.
  245. Spiers D.E., Spain J.N., Sampson J.D., Rhoads R.P. (2004). Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. J. Therm. Biol., 29: 759– 764.
  246. Stivanin S.C.B., Werncke D., Vizzotto E.F., Stumpf M.T., Thaler Neto A., Fischer V. (2019). Variation in available shaded area changes behaviour parameters in grazing dairy cows during the warm season. R. Bras. Zootec., 48: e20180316.
  247. Strasser A., O’Connor L., Dixit V.M. (2000). Apoptosis signaling. Annu. Rev. Biochem., 69: 217–245.
  248. Stull C.L., Messam L.L. McV., Collar C.A., Peterson N.G., Castillo A.R., Reed B.A., Andersen K.L., VerBoort W.R. (2008). Precipitation and temperature effects on mortality and lactation parameters of dairy cattle in California. J. Dairy Sci., 91: 4579–4591.
  249. Sylvester-Bradley R., Wiseman J. (2005). Yields of farmed species: constraints and opportunities in the 21st century. Nottingham University Press, 651.
  250. Tansey E.A., Johnson C.D. (2015). Recent advances in thermoregulation. Adv. Physiol. Educ., 39: 139–148.
  251. Tao S., Bubolz J.W., do Amaral B.C., Thompson I.M., Hayen M.J., Johnson S.E., Dahl G.E. (2011). Effect of heat stress during the dry period on mammary gland development. J. Dairy Sci., 94: 5976–5986.
  252. Thom E.C. (1959). The discomfort index. Weatherwise, 12: 57–61.
  253. Thompson I.M., Dahl G.E. (2012). Dry-period seasonal effects on the subsequent lactation. Prof. Anim. Sci., 28: 628–631.
  254. Tucker C.B., Rogers A.R., Schütz K.E. (2008). Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Appl. Anim. Behav. Sci., 109: 141–154.
  255. Uddin J., Phillips C.J., Auboeuf M., McNeill D.M. (2021). Relationships between body temperatures and behaviours in lactating dairy cows. Appl. Anim. Behav. Sci., 241: 105359.
  256. Valencia-Franco E., García y González E.C., Guevara-Arroyo A.M., Torres-Agatón F., Robles-Robles J.M., Rodríguez-Castillo J.D.C., Ponce-Covarrubias J.L. (2024). Effect of heat stress on lactating and non-lactating blackbelly ewes under tropical conditions during summer. Animals, 14: 2003.
  257. Valtorta S.E., Leva P.E., Gallardo M.R. (1997). Evaluation of different shades to improve dairy cattle well-being in Argentina. Int. J. Biometeorol., 41: 65–67.
  258. Van laer E., Tuyttens F.A.M., Ampe B., Sonck B., Moons C.P.H., Vandaele L. (2015). Effect of summer conditions and shade on the production and metabolism of Holstein dairy cows on pasture in temperate climate. Animal, 9: 1547–1558.
  259. Veissier I., Van Iaer E., Palme R., Moons C.P.H., Ampe B., Sonck B., Andanson S., Tuyttens F.A.M. (2018). Heat stress in cows at pasture and benefit of shade in a temperate climate region. Int. J. Biometeorol., 62: 585–595.
  260. Vickers L.A., Burfeind O., von Keyserlingk M.A., Veira D.M., Weary D.M., Heuwieser W. (2010). Technical note: Comparison of rectal and vaginal temperatures in lactating dairy cows. J. Dairy Sci., 93: 5246–5251.
  261. Vizzotto E.F., Fischer V., Thaler Neto A., Abreu A.S., Stumpf M.T., Werncke D., Schmidt F.A., McManus C.M. (2015). Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics. Animal, 9: 1559–1566.
  262. von Soosten D., Meyer U., Flachowsky G., Dänicke S. (2020). Dairy cow health and greenhouse gas emission intensity. Dairy, 1: 20–29.
  263. Wagter L.C., Mallard B.A., Wilkie B.N., Leslie K.E., Boettche P.J., Dekkers J.C.M. (2000). A quantitative approach to classifying Holstein cows based on antibody responsiveness and its relationship to peripartum mastitis occurrence. J. Dairy Sci., 83: 488–498.
  264. Wayman O., Johnson H.D., Merilan C.P., Berry I.L. (1962). Effect of ad libitum or force-feeding of two rations on lactating dairy cows subject to temperature stress 1. J . Dairy Sci., 45: 1472–1478.
  265. West J.W. (2003). Effects of heat-stress on production in dairy cattle. J. Dairy Sci., 86: 2131–2144.
  266. West J.W., Mullinix B.G., Bernard J.K. (2003). Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows. J. Dairy Sci., 86: 232–242.
  267. Westerheide S.D., Morimoto R.I. (2005). Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem., 280: 33097– 33100.
  268. Wettemann R.P., Tucker H.A. (1976). The influence of low and elevated ambient temperatures on serum prolactin and growth hormone in heifers – a review. Int. J. Biometeorol., 20: 36–41.
  269. Whay H.R., Waterman A.E., Webster A.J.F. (1997). Associations between locomotion, claw lesions and nociceptive threshold in dairy heifers during the peri-partum period. Vet. J., 154: 155–161.
  270. Wheelock J.B., Rhoads R.P., VanBaale M.J., Sanders S.R., Baumgard L.H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci., 93: 644–655. Wilks D.L., Coppock C.E., Lanham J.K., Brooks K.N., Baker C.C., Bryson W.L., Elmore R.G.,
  271. Stermer R.A. (1990). Responses of lactating Holstein cows to chilled drinking water in high ambient temperatures. J. Dairy Sci., 73: 1091–1099.
  272. Wit A., Wang S. (1968). Temperature-sensitive neurons in preoptic-anterior hypothalamic region: effects of increasing ambient temperature. Amer. J. Physiol.-Legacy Content 215: 1151–1159.
  273. Wohlgemuth S.E., Ramirez-Lee Y., Tao S., Monteiro A.P.A., Ahmed B.M., Dahl G.E. (2016). Short communication: effect of heat stress on mammary gland autophagy during the dry period. J. Dairy Sci., 99: 4875–4880.
  274. Wolfenson D., Roth Z. (2019). Impact of heat stress on cow reproduction and fertility. Anim. Front., 9: 32–38.
  275. Yadav V.P., Dangi S.S., Chouhan V.S., Gupta M., Dangi S.K., Singh G. (2016). Expression analysis of NOS family and HSP genes during thermal stress in goat (Capra hircus). Int. J. Biometeorol., 60: 381–389.
  276. Yan G., Li H., Shi Z. (2021). Evaluation of thermal indices as the indicators of heat stress in dairy cows in a temperate climate. Animals, 11: 2459.
  277. Yan S.R., Fazilati M.A., Samani N., Ghasemi H.R., Toghraie D., Nguyen Q., Karimipour A. (2020). Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. J. Ener. Stor., 30: 101445.
  278. Yousef M. K. (1985). Stress physiology in livestock. CRC Press Inc., Boca Raton, Florida. Yousef M.K., Johnson H.D. (1966). Calorigenesis of dairy cattle as influenced by thyroxine and environmental temperature. J. Anim. Sci., 25: 150–156.
  279. Zeng J., Cai J., Wang D. (2023). Heat stress affects dairy cow health status through blood oxygen availability. J. Anim. Sci. Biotechnol., 14: 112.
  280. Zhang B., Li X., Jiang Y., Liu J., Zhang J., Ma W. (2023). Comparative transcriptome analysis of adult worker bees under short-term heat stress. Front. Ecol. Evol., 11: 1099015.
  281. Zimbelman R.B., Rhoads R.P., Rhoads M.L., Duff G.C. Baumgard L.H., Collier R.J. (2009). A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. Proc. Southwest Nutr. Man. Conf., Tempe, AZ, pp. 158–168.
  282. Zimbleman R.B., Rhoads R.P., Baumgard L.H. (2009). Revised temperature humidity index (THI) for high producing dairy cows. J. Dairy Sci., 92(E-Suppl. 1): 347.
  283. Zou Y., Shao J., Li Y., Zhao F.Q., Liu J.X., Liu H. (2019). Protective effects of inorganic and organic selenium on heat stress in bovine mammary epithelial cells. Oxid. Med. Cell. Long., 2019: 1503478.
  284. Zucali M., Bava L., Tamburini A., Brasca M., Vanoni L., Sandrucci A. (2011). Effects of season, milking routine and cow cleanliness on bacterial and somatic cell counts of bulk tank milk. J. Dairy Res., 78: 436–441.
  285. Zwahlen J., Gairin E., Vianello S., Mercader M., Roux N., Laudet V. (2024). The ecological function of thyroid hormones. Philos. Trans. Royal Soc. B, 379: 20220511.
DOI: https://doi.org/10.2478/aoas-2025-0022 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Submitted on: Aug 19, 2024
Accepted on: Jan 7, 2025
Published on: Feb 26, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Soliman M. Soliman, Mohamed T. El-Saadony, Ahmed Saad, Walid F.A. Mosa, Fatma Mohamed Ameen Khalil, Ahmed Ezzat Ahmed, Dina Mostafa Mohammed, Mayadah M. Manasar, Mayada R. Farag, Mahmoud Alagawany, Heba M. Salem, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT