Have a personal or library account? Click to login
Effect of Selenium and Nano-Selenium Applications on Biological Functions in Aquaculture –A Review Cover

Effect of Selenium and Nano-Selenium Applications on Biological Functions in Aquaculture –A Review

Open Access
|Jul 2025

References

  1. Abarike E.D., Kuebutornye F.K., Jian J., Tang J., Lu Y., Cai J. (2019). Influences of immunostimulants on phagocytes in cultured fish: a mini review. Rev. Aquac., 11: 1219–1227.
  2. Abd El-Kader M.F., El-Bab A.F.F., Shoukry M. (2020). Evaluating the possible feeding strategies of selenium nanoparticles on the growth rate and wellbeing of European seabass (Dicentrarchus labrax). Aquac. Rep., 18: 100539.
  3. Abd El-Kader M.F., El-Bab A.F.F., Abd-Elghany M.F., Abdel-Warith A.-W.A., Younis E.M., Dawood M.A.O. (2021). Selenium nanoparticles act potentially on the growth performance, hemato-biochemical indices, antioxidative, and immune-related genes of European seabass (Dicentrarchus labrax). Biol. Trace Elem. Res., 8: 3126–3134.
  4. Abd El-Kader M.F., El-Kassas S., Abd-Elghany M.F., Abo-Al-Ela H.G., El-Naggar K., Al Wakeel R.A., Zaki A.G., Grana Y.S., El-Saftawy H.A. (2023). Dietary selenium nanoparticles positively modulate the growth and immunity of seabream (Sparus aurata) fingerlings exposed to low salinity stress and Vibrio parahaemolyticus challenge. Aquaculture, 576: 739893.
  5. Abdel-Wareth A.A.A., Aballah H.H.A., Shimaa A.A., Elsayed M.Y., Abdel-Wahab A.A.-W., Asmaa S.N.K, Md S., Jayant L. (2024). Effects of dietary supplementation with zinc oxide or selenium nanoparticles and their combination on rabbit productive performance, nutritional and physiological responses. Italian J. Anim. Sci., 23: 1258–1268.
  6. Abdollahi-Mousavi S.E., Keyvanshokooh S., Mozanzadeh M.T., Ghasemi A. (2024). Efficacy of nutritional selenium nanoparticles on growth performance, immune response, antioxidant capacity, expression of growth and immune-related genes, and post-stress recovery in juvenile sobaity seabream (Sparidentex hasta). Fish Shellfish. Immunol., 147: 109452.
  7. Abu-Elala N.M., Shaalan M., Ali S.E., Younis N.A. (2021). Immune responses and protective efficacy of diet supplementation with Se nanoparticles against cadmium toxicity in Oreochromis niloticus. Aquac. Res., 52: 3677–3686.
  8. Ahmad N., Hussain S.M., Ali S., Tahir M.F., Sarker P.K., Shahid M. (2024). Nano-selenium supplementation: improving growth, digestibility and mineral absorption in freshwater fish, Catla catla. BMC Vet. Res., 20: 438.
  9. Al-Deriny S.H., Dawood M.A.O., Elbialy Z.I., El-Tras W.F., Mohamed R.A. (2020). Selenium nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immunerelated genes, and heat shock protein in Nile tilapia (Oreochromis niloticus). Biol. Trace Elem. Res., 198: 661–668.
  10. Anwar Z., Ye C., Wang M., Zeng S., Gao M., Guo S., Kakakhel M.A., Hu B., Zhao G., Hong Y. (2024). Effects of dietary selenium on growth performance, antioxidant status, and gut microbial diversity of zebrafish (Danio rerio). Aquac. Rep., 37: 102276.
  11. Aramli M.S., Moghanlou K.S., Imani A. (2023). Effect of dietary antioxidant supplements (selenium forms, alpha-tocopherol, and coenzyme Q10) on growth performance, immunity, and physiological responses in rainbow trout (Oncorhynchus mykiss) using orthogonal array design. Fish Shellfish. Immunol., 134: 108615.
  12. Ashouri S., Keyvanshokooh S., Salati A.P., Johari S.A., Pasha-Zanoosi H. (2015). Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture, 446: 25–29.
  13. Avery J., Hoffmann P. (2018). Selenium selenoproteins and immunity. Nutrients, 10: 1203.
  14. Bai Z., Ren T., Han Y., Hu Y., Schohel M.R., Jiang Z. (2019). Effect of dietary biofermented selenium on growth performance, nonspecific immune enzyme, proximate composition and bioaccumulation of zebrafish (Danio rerio). Aquac. Rep., 13: 100180.
  15. Barchielli G., Capperucci A., Tanini D. (2022). The role of selenium in pathologies: an updated review. Antioxidants, 11: 251.
  16. Chadio S.E., Pappas A.C., Papanastasatos A., Pantelia D., Dardamani A., Fegeros K. (2015). Effects of high selenium and fat supplementation on growth performance and thyroid hormones concentration of broilers. J. Trace Elem. Med. Biol., 29: 202–207.
  17. Chen H., Li J., Yan L., Cao J., Li D., Huang G.Y., Xie L. (2020). Sub-chronic effects of dietary Se yeast and selenite on growth performance and the immune and antioxidant systems in Nile tilapia Oreochromis niloticus. Fish Shellfish. Immunol., 97: 283–293.
  18. Chen J.J., Cao J.L., Luo Y.J., Li J.Y. (2013). Effects of nano-selenium on antioxidant capacity and histopathology of Cyprinus carpio liver under fluoride stress. J. Appl. Ecol., 24: 2970.
  19. Çiçek S., Özoğul F. (2021). Effects of selenium nanoparticles on growth performance, hematological, serum biochemical parameters, and antioxidant status in fish. Anim. Feed Sci. Tech., 281: 115099.
  20. Dar A.H., Rashid N., Majid I., Hussain S., Dar M.A. (2020). Nanotechnology interventions in aquaculture and seafood preservation. Crit. Rev. Food Sci. Nutr., 60: 1912–1921.
  21. Dawood M.A.O., Koshio S., Zaineldin A.I., VanDoan H., Moustafa E.M., Abdel- Daim M.M., Angeles E.M., Hassaan M.S. (2019). Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol. Biochem., 45: 219–230.
  22. Dawood M.A., Eweedah N.M., Moustaf E.M., El-Sharawy M.E., Soliman A.A., Amer A.A., Atia M.H. (2020). Copper nanoparticles mitigate the growth, immunity, and oxidation resistance in common carp (Cyprinus carpio). Biol. Trace Elem. Res., 1: 10.
  23. Dawood M.A.O., Basuini M.F.E., Yilmaz S., Abdel-Latif H.M.R., Kari Z.A., Abdul Razab M.K.A., Ahmed H.A., Alagawany M., Gewaily M.S. (2021). Selenium nanoparticles as a natural anti-oxidant and metabolic regulator in aquaculture: a review. Antioxidants, 10: 1364.
  24. Deilamy P.H., Mousavi S.M., Zakeri M., Keyvanshokooh S., Kochanian P. (2021). Synergistic effects of selenium and magnesium nanoparticles on growth, digestive enzymes, some serum biochemical parameters and immunity of Asian sea bass (Lates calcarifer). Biol. Trace Elem. Res., 199: 3102–3111.
  25. Domínguez D., Sehnine Z., Castro P., Robaina L., Fontanillas R., Prabhu P.A.J., Izquierdo M. (2020). Optimum Se levels in diets high in plant-based feedstuffs for gilthead sea bream (Sparus aurata) fingerlings. Aquac. Nutr., 26: 579 –589.
  26. Du L.C., Yu H.R., Li L.Y., Zhang Q., Tian Q., Liu J.Q., Shan L.L. (2021) Dietary Se requirement of coho salmon (Oncorhynchus kisutch W.) alevins. Aquac. Int., 29: 2291–2304.
  27. Eissa E.S.H., Bazina W.K., Abd El-Aziz Y.M., Abd Elghany N.A., Tawfik W.A., Mossa M.I., Khalil H.S. (2023). Nano-selenium impacts on growth performance, digestive enzymes, antioxidant, immune resistance and histopathological scores of Nile tilapia, Oreochromis niloticus against Aspergillus flavus infection. Aquac. Int., 1: 25.
  28. El-Dahhar A.A., Gomaa A.K., Samy Y.E-Z., Mona M.M., Abdel Raheem M.M. (2024). Impact of organic and nanoparticle-selenium fortified larval weaning diet on survival, growth, gastrointestinal, and (GPx) activity of European sea bass (Dicentrarchus labrax) larvae. Aquac. Int., 32: 8501–8517.
  29. Elia A.C., Prearo M., Pacini N., Dӧrr A.J.M., Abete M.C. (2011). Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol. Environ. Saf., 74: 166–173.
  30. El-Sharawy M.E., Hamouda M., Soliman A.A. (2021). Selenium nanoparticles are required for the optimum growth behavior, antioxidative capacity, and liver wellbeing of striped catfish (Pangasianodon hypophthalmus). Sau. J. Biol. Sci., 28: 7241–7247.
  31. Fazio F. (2019). Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture, 500: 237–242.
  32. Filipa-Silva A., Monteiro M., Costa R.S., Sá T., Marques A., Valente L.M.P., Figueiredo-Silva C. (2025). Comparative study of dietary selenium sources on gilthead seabream (Sparus aurata): Growth, nutrient utilization, stress response and final product quality. Aquaculture, 595: 741508.
  33. Filippini T., Fairweather-Tait S., Vinceti M. (2023). Selenium and immune function: a systematic review and meta-analysis of experimental human studies. Am. J. Clin. Nutr., 117: 93–110.
  34. Fiúza L.S., Aragão N.M., Ribeiro Junior H.P., de Moraes M.G., Rocha Í.R.C,B., Lustosa Neto A.D., de Sousa R.R., Madrid R.M,M., de Oliveira E.G., Costa F.H.F. (2015). Effects of salinity on the growth, survival, haematological parameters and osmoregulation of tambaqui Colossoma macropomum juveniles. Aquac. Res., 46: 1–9.
  35. Fontagne-Dicharry S., Veron V., Larroquet L., Godin S., Wischhusen P., Aguirre P., Kaushik S.J. (2020). Effect of Se sources in plant-based diets on antioxidant status and oxidative stress-related parameters in rainbow trout juveniles under chronic stress exposure. Aquaculture, 529: 73568.
  36. Ghaffarizadeh A., Sotoudeh E., Mozanzadeh M.T., Sanati A.M., Ghasemi A. (2022). Supplementing dietary Se nano-particles increased growth, antioxidant capacity and immune-related genes transcription in Pacific whiteleg shrimp (Penaeus vannamei) juveniles. Aquac. Rep., 25: 101215.
  37. Ghafarifarsani H., Hoseinifar S.H., Raeeszadeh M., Vijayaram S., Rohani M.F., Van Doan H., Sun Y.Z. (2024 a). Comparative effect of chemical and green zinc nanoparticles on the growth, hematology, serum biochemical, antioxidant parameters, and immunity in serum and mucus of goldfish, Carassius auratus (Linnaeus, 1758). Biol. Trace Elem. Res., 202: 1264–1278.
  38. Ghafarifarsani H., Rohani M.F., Raeeszadeh M., Ahani S., Yousefi M., Talebi M., Hossain M.S. (2024 b). Pesticides and heavy metal toxicity in fish and possible remediation –a review. Ann. Anim. Sci., 24: 1007–1024.
  39. Ghazi S., Diab A.M., Khalafalla M.M., Mohamed R.A. (2021). Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biol. Trace Elem. Res., 1: 11.
  40. Hajirezaee S., Mohammadi G., Naserabad S.S. (2020). The protective effects of vitamin C on common carp (Cyprinus carpio) exposed to titanium oxide nanoparticles (TiO2-NPs). Aquaculture, 518: 734734.
  41. Hajirezaee S., Rafieepour A., Khanjani M.H. (2023). Ameliorating effects of gingko, Ginkgo biloba extract on waterborne toxicity of titanium dioxide nanoparticles (TiO2) in the rainbow trout, Oncorhynchus mykiss: growth, histology, oxidative stress, immunity, antioxidant defense and liver function. Aquac. Rep., 31: 101635.
  42. Harsij M., Kanani H.G., Adineh H. (2020). Effects of antioxidant supplementation (nanoselenium, vitamin C and E) on growth performance, blood biochemistry, immune status and body composition of rainbow trout (Oncorhynchus mykiss) under sub-lethal ammonia exposure. Aquaculture, 521: 734942.
  43. Huang Q., Wang S., Yang X., Han X., Liu Y., Khan N.A., Tan Z. (2023). Effects of organic and inorganic selenium on selenium bioavailability, growth performance, antioxidant status and meat quality of a local beef cattle in China. Front. Vet. Sci., 10: 27.
  44. Hunt A.O., Berkoz M., Ozkan F., Yalin S., Ercen Z., Erdogan E., Gündüz S.G. (2011). Effects of organic selenium on growth, muscle composition, and antioxidant system in rainbow trout. Isr. J. Aquac. Bamid., 63: 10.
  45. Ibrahim M.S., El-gendy G.M., Ahmed A.I., Elharoun E.R., Hassaan M.S. (2021). Nanoselenium versus bulk selenium as a dietary supplement: Effects on growth, feed efficiency, intestinal histology, haematobiochemical and oxidative stress biomarkers in Nile tilapia (Oreochromis niloticus Linnaeus, 1758) fingerlings. Aquac. Res., 52: 5642–5655.
  46. Izadpanah E., Saffari S., Keyvanshokooh S., Mozanzadeh M.T., Mousavi S.M., Pasha-Zanoosi H. (2022). Nano-selenium supplementation in plant protein-based diets changed thyroid hormones status and hepatic enzymes activity in Acanthopagrus arabicus female broodfish and their offspring. Aquac. Rep., 24: 101134.
  47. Izquierdo M. S., Ghrab W., Roo J., Hamre K., Hernández-Cruz C.M., Bernardini G., Terova G., Saleh R. (2017). Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilt-head seabream (Sparus aurata; Linnaeus, 1758). Aquac. Res., 48: 2852–2867.
  48. Jafari F., Agh N., Noori F., Morshedi V., Houshmand H., Mozanzadeh M.T. (2024). Effects of selenium nanoparticles on larval development, ontogeny of antioxidant enzymes and fatty acid profile in Arabian yellow fin seabream (Acanthopagrus arabicus). Aquac. Rep., 36: 102108.
  49. Jha N., Annamalai A., Essakiraj P., Balamurugan R., Lakra A.K., Tilwani Y.M., Arul V. (2022). Effects of polysaccharide-based silver and selenium nanoparticles on growth performance, biochemical parameters, and immune response of Cyprinus carpio. Fish Shell-fish. Immunol. Rep., 3: 10062.
  50. Juhász P., Lengyel S., Udvari Z., Sándor A.N., Stündl L. (2017). Optimised selenium enrichment of Artemia sp. feed to improve red drum (Sciaenops ocellatus) larvae rearing. Acta Bio. Hung., 68: 255–266.
  51. Karamzadeh M., Yahyavi M., Salarzadeh A.R., Nokhbe Zar D. (2022). Effects of dietary selenium and zinc nanoparticles on growth performance, immune responses, and antioxidant enzymes activities of white leg shrimp (Litopenaeus vannamei). Iran. J. Fisher. Sci., 21: 1125–1140.
  52. Keyvanshokooh S. (2024). A review of the quantitative real-time PCR and Omics approaches applied to study the effects of dietary selenium nanoparticles (nano-Se) on fish. Comp. Immunol. Rep., 6: 200127.
  53. Khademzade O., Kochanian P., Zakeri M., Alavi S.M.H.., Mozanzadeh M.T. (2022). Oxidative stress-related semen quality and fertility in the male Arabian yellowfin sea bream (Acanthopagrus arabicus) fed a selenium nanoparticle supplemented plant protein-rich diet. Aquac. Nutr., 3979203: 17.
  54. Khaled A.A., Shabaan A.M., Hammad S.M., Hafez Elsayed E., Saleh A.A. (2024). Exploring the impact of nano-Se and nano-clay feed supplements on interleukin genes, immunity and growth rate in European sea bass (Dicentrarchus labrax). Sci. Rep., 14: 2631.
  55. Khalid A., Hussain S.M., Khalid F., Shahzad M.M., Sharif A., Bashir F., Asrar M. (2023). Effects of dietary se nanoparticles supplementation on growth performance, hematology and body composition of Oreochromis niloticus fingerlings. Japs. J. Anim. Plant. Sci., 33: 1.
  56. Khalil H.S., Mansour A.T., Goda A.M.A., Omar E.A. (2019). Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre (Argyrosomus regius) fingerlings. Aquaculture, 501: 135–143.
  57. Khan K.U., Zuberi A., Nazir S., Fernandes J.B.K., Jamil Z., Sarwar H. (2016). Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile Tor putitora. Turk. J. Zool., 40: 704–712.
  58. Khan K.U., Zuberi A., Fernandes J.B.K., Ullah I., Sarwar H. (2017). An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiol. Biol., 43: 1689–1705.
  59. Khan M.Z.H., Hossain M.M.M., Khan M., Ali M.S., Aktar S., Moniruzzaman M., Mala K. (2020). Influence of nanoparticle-based nanonutrients on the growth performance and physiological parameters in tilapia (Oreochromis niloticus). RSC Adv., 10: 29918–29922.
  60. Kianersi F., Safahieh A.R., Salamat N., Salati A.P., Houshand H. (2021). Effect of sodium selenite and selenium nanoparticles on biochemical parameters of muscle, serum, antioxidant defense and exposure to mercury chloride in Acanthopagrus latus. Iran. Sci. Fisher. J., 30: 41–57.
  61. Kong Y., Ding Z., Zhang Y., Ye J., Du Z. (2017). Dietary selenium requirement of juvenile oriental river prawn Macrobrachium nipponense. Aquaculture, 476: 72–78.
  62. Kumar N., Krishnani K.K., Gupta S.K., Sharma R., Baitha R., Singh D.K., Singh N.P. (2018). Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus. Fish Shellfish. Immunol., 78: 289–298.
  63. Kumar N., Gupta S.K., Chandan N.K., Bhushan S., Singh N.P., Kumar P. (2020). Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci. Rep., 10: 1–17.
  64. Lauriano E.R., Pergolizzi S., Capillo G., Kuciel M., Alesci A., Faggio C. (2016). Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. Fish Shellfish. Immunol., 59: 250–255.
  65. Le K.T., Fotedar R. (2014). Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquaculture, 420–421: 57–62.
  66. Li L., Liu Z., Quan J., Lu J., Zhao G., Sun J. (2022). Dietary nanoselenium supplementation for heat-stressed rainbow trout: effects on organizational structure, lipid changes, and biochemical parameters as well as heat-shock-protein-and selenoprotein-related gene expression. Fish. Physiol. Biol., 48: 707–722.
  67. Li L., Liu Z., Quan J., Sun J., Lu J., Zhao G. (2023). Dietary nano-selenium alleviates heat stress-induced intestinal damage through affecting intestinal antioxidant capacity and microbiota in rainbow trout (Oncorhynchus mykiss). Fish Shellfish. Immunol., 133: 108537.
  68. Lin F., Zhang H., Yu J., Yu C., Chen C., Sun Z., Wang S., Wen X. (2021). Effects of dietary selenium on growth performance, anti-oxidative status and tissue selenium deposition of juvenile Chu’s croaker (Nibea coibor). Aquaculture, 536: 736439.
  69. Longbaf D.M., Ghaedtaheri A., Keyvanshokooh S., Salati A.P., Mousavi S.M., Pasha-Zanoosi H. (2019). Combined or individual effects of dietary magnesium and selenium nanoparticles on growth performance, immunity, blood biochemistry and antioxidant status of Asian seabass (Lates calcarifer) reared in freshwater. Aquac. Nutr., 25: 1422–1430.
  70. Mansour A.T.E., Goda A.A., Omar E.A., Khalil H.S., Esteban M. (2017). Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish. Immunol., 68: 516–524.
  71. Mechlaoui M., Dominguez D., Robaina L., Geraert P.A., Kaushik S., Saleh R., Briens M., Montero D., Izquierdo M. (2019). Effects of different dietary selenium sources on growth performance, liver and muscle composition, antioxidant status, stress response and expression of related genes in gilthead seabream (Sparus aurata). Aquaculture, 507: 251–259.
  72. Moges F.D., Patel P., Parashar S., Das B. (2020). Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture, 519: 734770.
  73. Mohammady E.Y., Mohamed A.E., Mohamed S.I., Mohamed E., Shimaa M.R.S., El-Haroun E.R., Mohamed S.H. (2023). Nano iron versus bulk iron forms as functional feed additives: growth, body indices, hematological assay, plasma metabolites, immune, anti-oxidative ability, and intestinal morphometric measurements of Nile tilapia, Oreochromis niloticus. Biol. Trace Elem. Res., 202: 787–799.
  74. Mohtashemipour H., Mohammadian T., Mozanzadeh M.T., Mesbah M., Nejad A.J. (2024). Dietary selenium nanoparticles improved growth and health indices in Asian seabass (Lates calcarifer) juveniles reared in high saline water. Aquacult. Nutr., 7480824. Montero D., Rimoldi S., Torrecillas S., Rapp J., Moroni F., Herrera A.,
  75. Gómez M., Fernández-Montero A., Terova G. (2022). Impact of polypropylene microplastics and chemical pollutants on European sea bass (Dicentrarchus labrax) gut microbiota and health. Sci. Total Environ., 805: 150402.
  76. Naderi M., Keyvanshokooh S., Salati A.P., Ghaedi A. (2017). Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquaculture, 474: 40–47.
  77. Nazer A., Harsij M., Shirangi S.A., Adineh H. (2020). Protective effect of dietary vitamin E and nano-Se supplementations on growth performance and hematological parameters of rainbow trout (Oncorhynchus mykiss) exposed to sublethal level of ammonia. Aquac. Physiol. Biot., 8: 95–122.
  78. Neamat-Allah A.N.F., Mahmoud E.A., Abd El Hakim Y. (2019). Efficacy of dietary nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection. Fish Shellfish. Immunol., 94: 280–287.
  79. Niu R., Yang Q., Dong Y., Hou Y., Liu G. (2022). Selenium metabolism and regulation of immune cells in immune-associated diseases. J. Cell. Phys., 237: 3449–3464.
  80. Pacitti D., Lawan M.M., Sweetman J., Martin S.A.M., Feldmann J., Secombes C.J. (2015). Selenium supplementation in fish: a combined chemical and biomolecular study to understand Sel-Plex assimilation and impact on selenoproteome expression in rainbow trout (Oncorhynchus mykiss). PLoS One, 10:0127041.
  81. Pan Z., Feng Y., Wang M., Meng W., Chen J. (2023). Geochemical characteristics of soil selenium and evaluation of selenium-rich land resources in Guiyang area. Front. Geo., 1: 1094023.
  82. Pecoraro B.M., Leal D.F., Frias-De-Diego A., Browning M., Odle J., Crisci E. (2022). The health benefits of selenium in food animals: a review. J. Anim. Sci. Biotechnol., 13: 58.
  83. Prabhu A.J., Schrama J.W., Kaushik S.J. (2016). Mineral requirements of fish: a systematic review. Rev. Aquac., 8: 172–219.
  84. Ragab S., Hoseinifar S.H., Van Doan H., Rossi W., Davies S., Ashour M., El-Haroun E. (2025). Overview of aquaculture Artificial Intelligence (AAI) applications: enhance sustainability and productivity, reduce labor costs, and increase the quality of aquatic products. Ann. Anim. Sci., 25: 441–453.
  85. Rao Y., Chen J., Guo Y., Ji T., Xie P. (2020). Rivaroxaban ameliorates angiotensin II-induced cardiac remodeling by attenuating TXNIP/ Trx2 interaction in KKAy mice. Throm. Res., 193: 45–52.
  86. Rathore S.S., Murthy H.S., Abdullah-Al M.M., Nasren S., Rakesh K., Kumar B.T.N., Abhiman P.B., Khandagale A.S. (2021). Nano-selenium supplementation to ameliorate nutrition physiology, immune response, antioxidant system and disease resistance against Aeromonas hydrophila in monosex Nile tilapia (Oreochromis niloticus). Biol. Trace Elem. Res., 199: 3073–3088.
  87. Rezaei S., Mohammadiazarm H., Keyvanshokooh S., Pasha-Zanoosi H., Sharif-Kanani H. (2024). Nutritional nano-selenium inclusion in fishmeal-free plant-based diets enhances stress resistance and post-stress recovery of common carp (Cyprinus carpio). Aquac. Rep., 38: 102298.
  88. Saffari S., Keyvanshokooh S., Zakeri M., Johari S.A., Pasha-Zanoosi H., Mozanzadeh M.T. (2018). Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hematoimmunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiol. Biochem., 44: 1087–1097.
  89. Saffari S., Keyvanshokooh S., Torfi Mozanzadeh M., Shahriari A. (2021). Effects of nano-Selenium supplementation in plant protein-rich diet on reproductive performance and egg and larval quality of female Arabian yellowfin sea bream (Acanthopagrus arabicus). Aquac. Nutr., 27: 1959–1971.
  90. Saffari S., Keyvanshokooh S., Mozanzadeh M.T., Shahriari A. (2022). Maternal supplementation of nano-selenium in a plant-based diet improves antioxidant competence of female Arabian yellowfin sea bream (Acanthopagrus arabicus) breeders and their progeny. Anim. Rep. Sci., 247: 107157.
  91. Santana M.S., de Melo G.D., Sandrini-Neto L., Di Domenico M., Prodocimo M.M. (2022). A meta-analytic review of fish antioxidant defense and biotransformation systems following pesticide exposure. Chemosphere, 291: 132730.
  92. Saremi N., Keyvanshokooh S., Mousavi S.M., Mohammadiazarm H. (2024). Synergistic effects of dietary selenium nanoparticles and vitamin C improve growth performance, immune response, and antioxidant status of juvenile common carp (Cyprinus carpio). J Trace Elem. Med. Biol., 127530.
  93. Sharif-Kanani H., Keyvanshokooh S., Mohammadiazarm H., Pasha-Zanoosi H., Rezaei S. (2024). Nano-selenium (nano-Se) removes the detrimental impacts of plant-based diets on the production performance and well-being of common carp (Cyprinus carpio). Aquac. Rep., 36: 102107.
  94. Sheikh S., Ghojaghi F., Ghelichi A., Jorjani S. (2023). Dietary effects of selenium nanoparticles on growth performance, survival rate, chemical composition, and muscle bioaccumulation of Nile tilapia (Oreochromis niloticus). Biol. Trace Elem. Res., 1: 6.
  95. Sherif A.H., Zommara M.A. (2024). Selenium nanoparticles ameliorate adverse impacts of aflatoxin in Nile tilapia with special reference to Streptococcus agalactiae infection. Biol. Trace Elem. Res., 202: 4767–4777.
  96. Sherine R., Hoseinifar S.H., Van Doan H., El-Haroun E. (2024). Evaluation of distillers dried grains with solubles in aquafeeds –a review. Ann. Anim. Sci., 24: 65–75.
  97. Siddik M.A., Vatsos I.N., Rahman M.A., Pham H.D. (2022). Selenium-enriched spirulina (SeE-SP) enhance antioxidant response, immunity, and disease resistance in juvenile Asian seabass, Lates calcarifer. Antioxidants, 11: 1572.
  98. Soliman M.A., Mahmoud H.K., Abdel-Monem U., Ayyat M. (2017). Effect of some feed additives on growth performance, blood components of Nile tilapia. Zagazig. J. Agric. Res., 44: 2165–2177.
  99. Sumana S.L., Chen H., Shui Y., Zhang C., Yu F., Zhu J., Su S. (2023). Effect of dietary selenium on the growth and immune systems of fish. Animals, 13: 2978.
  100. Swain P., Das R., Das A., Padhi S.K., Das K.C., Mishra S.S. (2019). Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquac. Nutr., 25: 486–494.
  101. Takahashi L.S., Biller-Takahashi J.D., Mansano C.F., Urbinati E.C., Gimbo R.Y., Saita M.V. (2017). Long-term organic selenium supplementation overcomes the trade-off between immune and antioxidant systems in pacu (Piaractus mesopotamicus). Fish Shellfish. Immunol., 60: 311–317.
  102. Thangarani A.J., Felix N., Suresh A.V., Kathirvelpandian A., Shanmugam S.A., Ramya R., Jeevagan I.J.M.A., Suman T.Y. (2024). Impact of dietary selenium supplementation on growth performance, bioaccumulation, antioxidant capacity, and gene expression in GIFT strain of Nile tilapia (Oreochromis niloticus). Aquac. Int., 1: 26.
  103. Thomas J., Janz D. (2011). Dietary selenomethionine exposure in adult zebrafish alters swimming performance, energetics and the physiological stress response. Aquat. Tox., 102: 79–86.
  104. Tseng Y., Marisol I., Sivagurunathan U., Philip A.J.P., Zamorano M.J., Dominguez D. (2024). Antioxidant and osteoinductive properties of organic selenium in microdiets for gilthead seabream (Sparus aurata) larvae. Aquaculture, 590: 741097.
  105. Vijayaram S., Ghafarifarsani H., Vuppala S., Nedaei S., Mahendran K., Murugappan R., Chou C.C. (2024). Selenium nanoparticles: revolutionizing nutrient enhancement in aquaculture –a review. Biol. Trace Elem. Res., 1: 12.
  106. Wande Y., Jie L., Aikai Z., Yaguo Z., Linlin Z., Yue G., Hang Z. (2020). Berberine alleviates pulmonary hypertension through Trx1 and β-catenin signaling pathways in pulmonary artery smooth muscle cells. Exp. Cell. Res., 390: 111910.
  107. Wang L., Xiao J.-X., Hua Y., Xiang X.W., Zhou Y.F., Ye L., Shao Q.J. (2019 a). Effects of dietary selenium polysaccharide on growth performance, oxidative stress and tissue selenium accumulation of juvenile black sea bream, Acanthopagrus schlegelii. Aquaculture, 503: 389–395.
  108. Wang X., Shen Z., Wang C., Li E., Qin J.G., Chen L. (2019 b). Dietary supplementation of Se yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir sinensis under nitrite stress. Fish Shellfish. Immunol., 87: 22–31.
  109. Wang L., Sagada G., Wang R., Li P., Xu B., Zhang C., Qiao J., Yan Y. (2022). Different forms of selenium supplementation in fish feed: the bioavailability, nutritional functions, and potential toxicity. Aquaculture, 549: 737819.
  110. Wischhusen P., Larroquet L., Durand T., Oger C., Galano J.-M., Amandine R., Vigor C., Prabhu P.A.J., Véron V., Briens M., Roy J., Kaushik S.J., Fauconneau B., Fontagné-Dicharry S. (2020). Oxidative stress and antioxidant response in rainbow trout fry exposed to acute hypoxia is affected by selenium nutrition of parents and during first exogenous feeding. Free Radic. Biol. Med., 155: 99–113.
  111. Ye L., Liu S., Zhang X., Wang C., Li P., Zhang C., Ji H., Yu H. (2023). Dietary nano-selenium improves health of liver and intestine of grass carp Ctenopharyngodon idella after overwintering. Anim. Feed Sci. Tech., 306: 115817.
  112. Yu H., Zhang C., Zhang X., Wang C., Li P., Liu G., Yan X., Xiong X., Zhang L., Hou J., Liu S., Zhou J., Ji H. (2020). Dietary nanoselenium enhances antioxidant capacity and hypoxia tolerance of grass carp Ctenopharyngodon idella fed with high-fat diet. Aquac. Nutr., 26: 545–557.
  113. Zahmatkesh A., Karimzadeh K., Faridnia M. (2020). Effect of dietary selenium nanoparticles and chitosan oligosaccharide on biochemical parameters of Caspian roach (Rutilus caspicus) under malathion stress. Casp. J. Env. Sci., 18: 59–71.
  114. Zhai Q., Cen, S., Li P., Tian F., Zhao J., Zhang H., Chen W. (2018). Effects of dietary selenium supplementation on intestinal barrier and immune responses associated with its modulation of gut microbiota. J. Environ. Sci. Tech. Lett., 5: 724–730.
  115. Zhang M., Li M., Li X., Qian Y., Wang R., Hong M. (2020). The protective effects of Se on chronic ammonia toxicity in yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish. Immunol., l107: 137–145.
  116. Zhang D.G., Zhao T., Xu X.J., Xu Y.H., Wei X.L., Jiang M., Luo Z. (2022). Selenoprotein F (SELENOF)-mediated AKT1-FOXO3a-PYGL axis contributes to selenium supranutrition-induced glycogenolysis and lipogenesis. Biochim. Biophys. Acta (BBA)-Gene Reg. Mech., 1865: 194814.
  117. Zhou C., Wang Z., Ran M., Liu Y., Song Z. (2024). Nano-selenium ameliorates microplastics-induced injury: Histology, antioxidant capacity, immunity and intestinal microbiota of grass carp (Ctenopharyngodon idella). Ecot. Env. Saf., 285: 117128.
  118. Zhu C., Wu Z., Liu Q., Wang X., Zheng L., He S., Yang F., Ji H., Dong W. (2024). Selenium nanoparticles in aquaculture: Unique advantages in the production of Se-enriched grass carp (Ctenopharyngodon idella). Anim. Nutr., 16: 189–201.
  119. Zhu Y., Chen Y., Liu Y., Yang H., Liang G., Tian L. (2011). Effect of dietary selenium level on growth performance, body composition and hepatic glutathione peroxidase activities of largemouth bass Micropterus salmoide. Aquac. Res., 43: 1660–1668.
  120. Zuo H., Yuan J., Yang L., Liang Z., Weng S., He J., Xu X. (2019). Characterization and immune function of the thioredoxin-interacting protein (TXNIP) from Litopenaeus vannamei. Fish Shellfish. Immunol., 84: 20–27.
DOI: https://doi.org/10.2478/aoas-2025-0021 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 905 - 919
Submitted on: Oct 4, 2024
Accepted on: Jan 13, 2025
Published on: Jul 24, 2025
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Sherine R. Ahmed, Hien Van Doan, Simon Davies, Mohamed S. Hassaan, Ashraf M.A. Goda, Ehab El-Haroun, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.