References
- Abdolahi A., Vahabzadeh Z., Izadpanah E., Moloudi M.R. (2022). Vaspin attenuates steatosis-induced fibrosis via GRP78 receptor by targeting AMPK signaling pathway. J. Physiol. Biochem., 78: 185–197.
- Ai X., Xiang L., Huang Z., Zhou S., Zhang S., Zhang T., Jiang T. (2018). Overexpression of PIK3R1 promotes hepatocellular carcinoma progression. Biol. Res., 51: 1–10.
- Apostolou A., Shen Y., Liang Y., Luo J., Fang S. (2008). Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp. Cell Res., 314: 2454–2467.
- Bösl M.R., Takaku K., Oshima M., Nishimura S., Taketo M.M. (1997). Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc. Natl. Acad. Sci. USA, 94: 5531–5534.
- Buenrostro J.D., Wu B., Chang H.Y., Greenleaf W.J. (2015). ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol., 109: 21.29.1.
- Capelle C.M., Zeng N., Danileviciute E., Rodrigues S.F., Ollert M., Balling R., He F.Q. (2021). Identification of VIMP as a gene inhibiting cytokine production in human CD4+ effector T cells. iScience, 24: 102289.
- Chhetri G., Liang Y., Shao J., Han D., Yang Y., Hou C., Wang P., Tao X., Shen Y., Jiang T., Feng L., Shen Y. (2020). Role of mesencephalic astrocyte-derived neurotrophic factor in alcohol-induced liver injury. Oxid. Med. Cell. Longev., 2020: 9034864.
- Chrobociński K., Witarski W., Piórkowska K., (2022). A method of hepatocytes segmentation in microscopic images of trypan blue stained cellular suspension. Proc. Science and Information Conference, 2022, pp. 214–224.
- Curran J.E., Jowett J.B.M., Elliott K.S., Gao Y., Gluschenko K., Wang J., Azim D.M.A., Cai G., Mahaney M.C., Comuzzie A.G., Dyer T.D., Walder K.R., Zimmet P., MacCluer J.W., Collier G.R., Kissebah A.H., Blangero J. (2005). Genetic variation in selenoprotein S influences inflammatory response. Nat. Genet., 37: 1234–1241.
- Dudek J., Benedix J., Cappel S., Greiner M., Jalal C., Müller L., Zimmermann R. (2009). Functions and pathologies of BiP and its interaction partners. Cell. Mol. Life Sci., 66: 1556–1569.
- Fernandes-da-Silva A., Miranda C.S., Santana-Oliveira D.A., Oliveira-Cordeiro B., Rangel-Azevedo C., Silva-Veiga F.M., Martins F.F., Souza-Mello V. (2021). Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Europ. J. Nutr., 60: 2949–2960.
- Fruman D.A., Mauvais-Jarvis F., Pollard D.A., Yballe C.M., Brazil D., Bronson R.T., Kahn C.R., Cantley L.C. (2000). Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat. Genet., 26: 379–382.
- Gao Y., Feng H.C., Walder K., Bolton K., Sunderland T., Bishara N., Quick M., Kantham L., Collier G.R. (2004). Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress – SelS is a novel glucose-regulated protein. FEBS Lett., 563: 185–190.
- Iurlaro R., Muñoz-Pinedo C. (2016). Cell death induced by endoplasmic reticulum stress. FEBS J., 283: 2640–2652.
- Jang S., Lee C.H. Choi K.M., Lee J., Choi J.W., Kim K.A., Park C.M. (2011). Correlation of fatty liver and abdominal fat distribution using a simple fat computed tomography protocol. World J. Gastroenterol., 17: 3335–3341.
- Ji N., Xiang L., Zhou B., Lu Y., Zhang M. (2023). Hepatic gene expression profiles during fed–fasted–refed state in mice. Front. Genet., 14: 1145769.
- Kampinga H.H., Craig E.A. (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol., 11: 579–592.
- Kim Y.J., Kim H.J., Chung K.Y., Choi I., Kim S.H. (2014). Transcriptional activation of PIK3R1 by PPARγ in adipocytes. Mol. Biol. Rep., 41: 5267–5272.
- Kuwabara K., Matsumoto M., Ikeda J., Hori O., Ogawa S., Maeda Y., Kitagawa K., Imuta N., Kinoshita T., Stern D.M., Yanagi H., Kamada T. (1996). Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J. Biol. Chem., 271: 5025–5032.
- Lee A.H., Scapa E.F., Cohen D.E., Glimcher L.H. (2008). Regulation of hepatic lipogenesis by the transcription factor XBP1. Science, 320: 1492–1496.
- Lee J., Sun C., Zhou Y., Lee J., Gokalp D., Herrema H., Park S.W. Davis R.J., Ozcan U. (2011). p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat. Med., 17: 1251–1260.
- Lee J.H., Kwon J.H., Jeon Y.H., Ko K.Y., Lee S.R., Kim I.Y. (2014). Pro178 and Pro183 of selenoprotein S are essential residues for interaction with p97(VCP) during endoplasmic reticulum-associated degradation. J. Biol. Chem., 289: 13758–13768.
- Lee J.H., Park K.J., Jang J.K., Jeon Y.H., Ko K.Y., Kwon J.H., Lee S.R., Kim I.Y. (2015). Selenoprotein S-dependent selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J. Biol. Chem., 290: 29941–29952.
- Lin Y., Yang Z., Xu A., Dong P., Huang Y., Liu H., Li F., Wang H., Xu Q., Wang Y., Sun D., Zou Y., Zou X., Wang Yu, Zhang D., Liu H., Wu X., Zhang M., Fu Y., Cai Z., Liu C., Wu S. (2015). PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/ GSK3β/CTNNB1 signaling pathway. Sci. Rep., 5: 8997.
- Lindholm P., Peränen J., Andressoo J.O., Kalkkinen N., Kokaia Z., Lindvall O., Timmusk T., Saarma M. (2008). MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol. Cell. Neurosci., 39: 356–371.
- Liu X., Green R.M. (2019). Endoplasmic reticulum stress and liver diseases. Liver Res., 3: 55–64.
- Liu J., Wu Z., Han D., Wei C., Liang Y., Jiang T., Chen L., Sha M., Cao Y., Huang F., Geng X., Yu J., Shen Yujun Wang H., Feng L., Wang D., Fang S., Wang S., Shen Y. (2020). Mesencephalic astrocyte-derived neurotrophic factor inhibits liver cancer through small ubiquitin-related modifier (SUMO)ylation-related suppression of NF-κB/Snail signaling pathway and epithelial-mesenchymal transition. Hepatology, 71: 1262–1278.
- Liu X., Henkel A.S., LeCuyer B.E., Schipma M.J., Anderson K.A., Green R.M. (2015). Hepatocyte X-box binding protein 1 deficiency increases liver injury in mice fed a high-fat/sugar diet. Am. J. Physiol. Gastrointest. Liver Physiol., 309: G965–G974.
- Love M.I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15: 550.
- Malhi H., Kaufman R.J. (2011). Endoplasmic reticulum stress in liver disease. J. Hepatol., 54: 795–809.
- Milani P., Escalante-Chong R., Shelley B.C., Patel-Murray N.L., Xin X., Adam M., Mandefro B., Sareen D., Svendsen C.N., Fraenkel E. (2016). Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells. Sci. Rep., 61: 1–10.
- Mizobuchi N., Hoseki J., Kubota H., Toyokuni S., Nozaki J.I., Naitoh M., Koizumi A., Nagata K. (2007). ARMET is a soluble ER protein induced by the unfolded protein response via ERSE-II element. Cell Struct. Funct., 32: 41–50.
- Park S.W., Zhou Y., Lee J., Lu A., Sun C., Chung J., Ueki K., Ozcan U. (2010). The regulatory subunits of PI3K, p85α and p85β, interact with XBP-1 and increase its nuclear translocation. Nat. Med., 16: 429–437.
- Piórkowska K., Żukowski K., Ropka-Molik K., Tyra M. (2022). New long-non coding RNAs related to fat deposition based on pig model. Ann. Anim. Sci., 22: 1211–1224.
- Pitts M.W., Hoffmann P.R. (2018). Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium, 70: 76–86.
- Rao S., Oyang L., Liang J., Yi P., Han Y., Luo X., Xia L., Lin J., Tan S., Hu J., Wang H., Tang L., Pan Q., Tang Y., Zhou Y., Liao Q. (2021). Biological function of HYOU1 in tumors and other diseases. Onco. Targets. Ther., 14: 1727–1735.
- Rehati A., Abuduaini B., Liang Z., Chen D., He F. (2023). Identification of heat shock protein family A member 5 (HSPA5) targets involved in nonalcoholic fatty liver disease. Genes Immun., 24: 124–129.
- Ropka-Molik K., Pawlina-Tyszko K., Żukowski K., Tyra M., Derebecka N., Wesoły J., Szmatoła T., Piórkowska K. (2020). Identification of molecular mechanisms related to pig fatness at the transcriptome and miRNAome levels. Genes (Basel)., 11: 600.
- Rueli R.H.L.H., Torres D.J., Dewing A.S.T., Kiyohara A.C., Barayuga S.M., Bellinger M.T., Uyehara-Lock J.H., White L.R., Moreira P.I., Berry M.J., Perry G., Bellinger F.P. (2017). Selenoprotein S reduces endoplasmic reticulum stress-induced phosphorylation of tau: potential role in selenate mitigation of tau pathology. J. Alzheimers. Dis., 55: 749–762.
- Sanson M., Ingueneau C., Vindis C., Thiers J.C., Glock Y., Rousseau H., Sawa Y., Bando Y., Mallat Z., Salvayre R., Nègre-Salvayre A. (2008). Oxygen-regulated protein-150 prevents calcium homeostasis deregulation and apoptosis induced by oxidized LDL in vascular cells. Cell Death Differ., 15: 1255–1265.
- Savell J.W., Cross H.R. (1988). The role of fat in the palatability of beef, pork, and lamb. Committee on Technological Options to Improve the Nutritional Attributes of Animal Products. National Academies Press (US).
- Schulze A., Standera S., Buerger E., Kikkert M., Van Voorden S., Wiertz E., Koning F., Kloetzel P.M., Seeger M. (2005). The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol., 354: 1021–1027.
- Schweizer U., Fradejas-Villar N. (2016). Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J., 30: 3669–3681.
- Steensels S., Qiao J., Ersoy B.A. (2020). Transcriptional regulation in non-alcoholic fatty liver disease. Metabolites, 10: 1–34.
- Sun Y., Cai R., Wang Y., Zhao R., Qin J., Pang W. (2020). A newly identified lncRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals, 10: 926.
- Tyra M., Zak G. (2013). Analysis of the possibility of improving the indicators of pork quality through selection with particular consideration of intramuscular fat (IMF) content. Ann. Anim. Sci., 13: 33–44.
- Ueki K., Algenstaedt P., Mauvais-Jarvis F., Kahn C.R. (2000). Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol. Cell. Biol., 20: 8035–8046.
- Vickers A.E.M., Ulyanov A.V., Fisher R.L. (2018). Progression of repair and injury in human liver slices. Int. J. Mol. Sci., 19: 4130. Wang D.Q., Miao X., Gao J., Zhou Y., Ji F., Cheng X. (2019). The 150-kDa oxygen-regulated protein (ORP150) regulates proteinuria in diabetic nephropathy via mediating VEGF. Exp. Mol. Pathol., 110: 104255.
- Wang J., Lee J., Liem D., Ping P. (2017). HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene, 618: 14–23. Wang M., Wey S., Zhang Y., Ye R., Lee A.S. (2009). Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal., 11: 2307–2316.
- Wang M., Zhang J., Gong N. (2022). Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: a narrative review. Ann. Palliat. Med., 11: 806–817.
- Xiao G., Zhang T., Yu S., Lee S., Calabuig-Navarro V., Yamauchi J., Ringquist S., Dong H.H. (2013). ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J. Biol. Chem., 288: 25350–25361.
- Xing K., Wang K., Ao H., Chen S., Tan Z., Wang Y., Xitong Z., Yang T., Zhang F., Liu Y., Ni H., Sheng X., Qi X., Wang X., Guo Y., Wang C. (2019). Comparative adipose transcriptome analysis digs out genes related to fat deposition in two pig breeds. Sci. Rep., 9: 1–11.
- Yan F., Powell D.R., Curtis D.J., Wong N.C. (2020). From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol., 21: 1–16.
- Yang C., Gao Y. (2020). Mesencephalic astrocyte-derived neurotrophic factor: A treatment option for Parkinson’s disease. Front. Biosci., 25: 1718–1731.
- Yang W., Shen Y., Chen Y., Chen L., Wang L., Wang H., Xu S., Fang S., Fu Y., Yu Y., Shen Yuxian (2014). Mesencephalic astrocyte-derived neurotrophic factor prevents neuron loss via inhibiting ischemia-induced apoptosis. J. Neurol. Sci., 344: 129–138.
- Ye Y., Shibata Y., Yun C., Ron D., Rapoport T.A., Ye Y., Shibata Y., Yun C., Ron D., Rapoport T.A. (2004). A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 429: 841–847.
- Yoshiuchi K., Kaneto H., Matsuoka T., Kohno K., Iwawaki T., Nakatani Y., Yamasaki Y., Hori M., Matsuhisa M. (2008). Direct monitoring of in vivo ER stress during the development of insulin resistance with ER stress-activated indicator transgenic mice. Biochem. Biophys. Res. Commun., 366: 545–550.
- Zong Z.H., Du Z.X., Zhang H.Y., Li C., An M.X., Li S., Yao H.B., Wang H.Q. (2016). Involvement of Nrf2 in proteasome inhibition-mediated induction of ORP150 in thyroid cancer cells. Oncotarget, 7: 3416–3426.