References
- Adepoju O.T. (2020). Nutrient composition of termites. In: African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components, Mariod A.A. (ed.). Switzerland AG, Springer, Cham, 281–291.
- Adli D.N. (2021). Use of insects in poultry feed as replacement soya bean meal and fish meal in development countries: a systematic review. Livestock Research for Rural Development, 33: 1–4.
- Akullo J., Agea J.G., Obaa B.B., Okwee-Acai J., Nakimbugwe D. (2018). Nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. Int. Food Res. J., 25: 159–166.
- Anankware J.P., Roberts B.J., Cheseto X., Osuga I.M., Savolainen V., Collins C. (2021). The nutritional profiles of five important edible insect species from West Africa –an analytical and literature synthesis. Front. Nutr., 8: 792941.
- AOAC (2000). Official Methods of Analysis of the AOAC International. The Association: Arlington County, VA, USA, 1, 17 pp.
- AOAC (2010). Association of Analytic Chemist, Official Method of Analysis, 17th edition, AOAC, Washington, D.C, 1: 69–88.
- Awobusuyi T.D., Pillay K., Siwela M. (2020). Consumer acceptance of biscuits supplemented with a sorghum-insect meal. Nutrients, 12: 895.
- Babarinde S.A., Mvumi B.M., Babarinde G.O., Manditsera F.A., Akande T.O., Adepoju A.A. (2021). Insects in food and feed systems in sub-Saharan Africa: The untapped potentials. Int. J. Trop. Insect Sci., 41: 1923–1951.
- Budran E.G., Abdelhamid M.A., Hassan N.M., Nemat Alla M.M. (2023). Improving fatty acid composition of soybean yield under NaCl stress by soaking seeds in ascorbate. Acta Physiol. Plant., 45: 75.
- Chen K.I., Erh M.H., Su N.W., Liu W.H., Chou C.C., Cheng K.C. (2012). Soyfoods and soybean products: from traditional use to modern applications. Appl Microbiol. Biotechnol., 96: 9–22.
- Cho J.H., Kim I. (2011). Fishmeal –nutritive value. J Anim Physiol Anim Nutr., 95: 685–692.
- Dobermann D., Swift J.A., Field L.M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutri Bull., 42: 293–308.
- Dzerefos C.M., Witkowski E.T.F., Toms R. (2013). Comparative ethnoentomology of edible stinkbugs in southern Africa and sustainable management considerations. Ethnobiol. Ethnomedicine., 9: 1–12.
- Egan B., Nethavhani Z., van Asch B. (2021). Overview of the genetic diversity of African Macrotermes (Termitidae: Macrotermitinae) and implications for taxonomy, ecology and food science. Insects, 12: 518.
- Egonyu J., Subramanian S., Tanga C.M., Dubois T., Ekesi S., Kelemu S. (2021). Global overview of locusts as food, feed and other uses. Glob. Food Sec., 31: 100574.
- Elahi U., Xu C., Wang J. (2022). Insect meal as a feed ingredient for poultry. Anim Biosci., 35: 332–346.
- El Hajj R., Mhemdi H., Besombes C., Lefrancois V., Allaf K., Vorobiev E. (2023). Instant controlled pressure-drop assisted pressing for defatting and dewatering of yellow mealworm larvae: process study and optimisation. J. Insects Food Feed., 9: 761–779.
- Etiosa O., Chika N., Benedicta A. (2018). Mineral and proximate composition of soya bean. Asian J. Phys. Chem. Sci., 4: 1–6.
- Fombong F.T., Kinyuru J.N. (2018). Termites as food in Africa. Termites and Sustainable Management: Volume 1 –Biology, Social Behaviour and Economic Importance, pp. 217–240.
- Fombong F.T., Kinyuru J., Ng’ang’a J., Ayieko M., Tanga C.M., Van den Broeck J., Van Der Borght M. (2021). Affordable processing of edible orthopterans provides a highly nutritive source of food ingredients. Foods., 10: 144.
- Freccia A., Tubin J.S.B., Rombenso A.N., Emerenciano M.G.C. (2020). Insects in aquaculture nutrition: an emerging eco-friendly approach or commercial reality? Emerging Technologies, Environment and Research for Sustainable Aquaculture: 1–14
- Ghosh S., Lee S.M., Jung C., Meyer-Rochow V.B. (2017). Nutritional composition of five commercial edible insects in South Korea. J. Asia Pac. Entomol., 20: 686–694.
- Han X., Heinonen M. (2021). Development of ultra-high-performance liquid chromatographic and fluorescent method for the analysis of insect chitin. Food Chem., 334: 127577.
- Hermans W.J., Senden J.M., Churchward-Venne T.A., Paulussen K.J., Fuchs C.J., Smeets J.S., van Loon L.J. (2021). Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am. J. Clin. Nutr., 114: 934–944.
- Hlongwane Z.T., Slotow R., Munyai T.C. (2020). Indigenous knowledge about consumption of edible insects in South Africa. Insects, 12: 22.
- Hlongwane Z.T., Slotow R., Munyai T.C. (2021). The role of edible insects in rural livelihoods, and identified challenges in Vhembe District, Limpopo, South Africa. Resources, 10: 123.
- Igwe C.U., Ujowundu C.O., Nwaogu L.A., Okwu G.N. (2011). Chemical analysis of an edible African termite Macrotermes nigeriensis, a potential antidote to food security problem. Biochem. Anal. Biochem., 1: 2161–1009.
- Indriani S., Karim M.S.A., Nalinanon S., Karnjanapratum S. (2020). Quality characteristics of protein-enriched brown rice flour and cake affected by Bombay locust (Patanga succincta L.) powder fortification. Food Sci. Technol., 119: 108876.
- Ivanov D.S., Lević J.D., Sredanović S.A. (2010). Fatty acid composition of various soybean products. Food Feed Res., 37: 65–70.
- Keil C., Grebenteuch S., Kröncke N., Kulow F., Pfeif S., Kanzler C., Haase H. (2022). Systematic studies on the antioxidant capacity and volatile compound profile of yellow mealworm larvae (T. molitor L.) under different drying regimes. Insects, 13: 166.
- Kewuyemi Y.O., Kesa H., Chinma C.E., Adebo O.A. (2020). Fermented edible insects for promoting food security in Africa. Insects, 11: 283.
- Khalil R.M. (2018). Locust (Schistocerca Gregaria) as an alternative source of protein compared with other conventional protein sources (doctoral dissertation, Sudan University of Science and Technology). Available from: http://repository.sustech.edu/handle/123456789/21581
- Kim T.K., Yong H.I., Kim Y.B., Kim H.W., Choi Y.S. (2019). Edible insects as a protein source: A review of public perception, processing technology, and research trends. Food Sci. Anim. Res., 39: 521.
- Kinyuru J.N., Kenji G.M., Njoroge M.S. (2009). Process development, nutrition and sensory qualities of wheat buns enriched with edible termites (Macrotermes subhylanus) from Lake Victoria region, Kenya. African J. Food Agric. Nutr. Dev., 9: 1–12.
- Kinyuru J.N., Konyole S., Roos N., Onyango C.M., Owino V.O., Owuor B.O., Estambale B.B., Friis H., Aagaard-Hansen J., Kenji G.M. (2013). Nutrient composition of four species of winged termites consumed in western Kenya. J. Food. Compost. Anal., 30: 120–124.
- Kinyuru J.N., Mogendi J.B., Riwa C.A., Ndung’u N.W. (2015). Edible insects –a novel source of essential nutrients for human diet: Learning from traditional knowledge. Anim. Front., 5: 14–19.
- Klunder H.C., Wolkers-Rooijackers J., Korpela J.M., Nout M.R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control., 26: 628–631.
- Köhler R., Kariuki L., Lambert C., Biesalski H.K. (2019). Protein, amino acid and mineral composition of some edible insects from Thailand. J Asia-Pac Entomol., 22: 372–378.
- Kolobe S.D., Manyelo T.G., Sebola N.A., Monnye M. (2023 a). Scope and present status of rearing edible insects for animal feeding in Africa. All Life, 16: 2206542.
- Kolobe S.D., Manyelo T.G., Malematja E., Sebola N.A., Mabelebele M. (2023 b). Fats and major fatty acids present in edible insects utilised as food and livestock feed. Vet. Anim. Sci., 22: 100312.
- Kouřimská L., Adámková A. (2016). Nutritional and sensory quality of edible insects. NFS J., 4: 22–26.
- Kuntadi K., Adalina Y., Maharani K.E. (2018). Nutritional compositions of six edible insects in Java. Indones. J. Res., 5: 57–68.
- Mariod A.A. (2020). The legislative status of edible insects in the world. In: African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components, Mariod A.A. (ed.). Switzerland AG, Springer, Cham, pp. 141–148.
- Matandirotya N.R., Filho W.L., Mahed G., Maseko B., Murandu C.V. (2022). Edible insects consumption in Africa towards environmental health and sustainable food systems: a bibliometric study. Int. J. Environ. Res. Public Health, 19: 14823.
- Melgar-Lalanne G., Hernandez-Alvarez A.J., Salinas-Castro A. (2019). Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf., 18: 1166–1191.
- Meyer-Rochow V.B., Gahukar R.T., Ghosh S., Jung C. (2021). Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods, 10: 1036.
- Mlček J., Rop O., Borkovcova M., Bednářová M. (2014). A comprehensive look at the possibilities of edible insects as food in Europe –a review. Polish. J. Food Nutri. Sci., 64: 147-157
- Monter-Miranda J.G., Zamudio-Flores P.B., Tirado-Gallegos J.M., Molina-Corral F.J., Ochoa-Reyes E., Rios-Velasco C., de la Peña H.Y.L. (2018). Nutritional characterization of fatty acids and minerals in Brachystola magna (Girard) during their development. Emir. J. Food Agric., 30: 389–395.
- Mousavi S., Zahedinezhad S., Loh J.Y. (2020). A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aquat. Res., 12: 100–115.
- Mulazzani L., Madau F.A., Pulina P., Malorgio G. (2021). Acceptance of insect meal in aquaculture feeding: A stakeholder analysis for the Italian supply chains of trout and seabass. J. World Aquac. Soc., 52: 378–394.
- Musundire R., Osuga I.M., Cheseto X., Irungu J., Torto B. (2016). Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stink bug stored in recycled grain containers. PloS one., 11: e0145914.
- Najafi M.H., Zeinoaldini S., Ganjkhanlou M., Mohammadi H., Hopkins D.L., Ponnampalam E.N. (2012). Performance, carcass traits, muscle fatty acid composition and meat sensory properties of male Mahabadi goat kids fed palm oil, soybean oil or fish oil. Meat Sci., 92: 848–854.
- Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Józefiak A. (2019). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103.
- Nyangena D.N., Mutungi C., Imathiu S., Kinyuru J., Affognon H., Ekesi S., Fiaboe K.K. (2020). Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods, 9: 574.
- Oonincx D.G.A.B., Finke M.D. (2021). Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed., 7: 639–659.
- Osimani A., Garofalo C., Milanović V., Taccari M., Cardinali F., Aquilanti L., Clementi F. (2017). Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol., 243: 1157–1171.
- Pieterse E., Erasmus S.W., Uushona T., Hoffman L.C. (2019). Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric., 99: 893–903.
- Regost C., Arzel J., Robin J., Rosenlund G., Kaushik S.J. (2003). Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima): 1. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture, 217: 465–482.
- Riekkinen K., Väkeväinen K., Korhonen J. (2022). The effect of substrate on the nutrient content and fatty acid composition of edible insects. Insects, 13: 590.
- Rumpold B.A., Schlüter O.K. (2013). Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57: 802–823.
- Sales-Campos H., De Souza P.C., Peghini B.C., Da Silva J.G., De Barros Cardoso C.R. (2013). An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem., 13: 201–210.
- Scudder G.G. (2017). The importance of insects. In: Insect Biodiversity: Science and Society, pp. 9–43.
- Sithole M., Phiri K., Masabo T., Serpa S. (2021). Gendered spaces in natural resource utilisation for sustainable development in rural communities of Zimbabwe. Cogent Soc. Sci., 7: 1909792.
- Son Y.J., Hwang I.K., Nho C.W., Kim S.M., Kim S.H. (2021). Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) larvae and characterization of mealworm chitin and chitosan. Foods, 10: 640.
- Ssepuuya G., Namulawa V., Mbabazi D., Mugerwa S., Fuuna P., Nampijja Z., Nakimbugwe D. (2017). Use of insects for fish and poultry compound feed in sub-Saharan Africa –a systematic review. J. Insects Food Feed, 3: 289–302.
- Straub P., Tanga C.M., Osuga I., Windisch W., Subramanian S. (2019). Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Anim. Feed Sci. Technol., 255: 114215.
- Stull V.J., Weir T.L. (2023). Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health. Nat. Food., 4: 283–287.
- Tang C., Yang D., Liao H., Sun H., Liu C., Wei L., Li F. (2019). Edible insects as a food source: a review. Food Prod., 1: 1–13.
- Tanga C.M., Egonyu J.P., Beesigamukama D., Niassy S., Emily K., Magara H.J., Ekesi S. (2021). Edible insect farming as an emerging and profitable enterprise in East Africa. Curr. Opin. Insect. Sci., 48: 64–71.
- Tiencheu B., Womeni H.M., Linder M., Mbiapo F.T., Villeneuve P., Fanni J., Parmentier M. (2013). Changes of lipids in insect (Rhynchophorus phoenicis) during cooking and storage. Eur. J. Lipid Sci. Technol., 115: 186–195.
- Ummara U.E., Riaz A., Majeed W., Kanwal S., Parveen A., Liaqat T., Ramzan U. (2023). Market potential and statistics on current insect consumption as food. In: Edible Insects Processing for Food and Feed. Boca Raton, Florida, CRC Press, 1st ed., pp. 277–304.
- Van Huis A. (2020). Edible crickets, but which species? J. Insects Food Feed., 6: 91–94.
- Van Itterbeeck J., Pelozuelo L. (2022). How many edible insect species are there? A not so simple question. Diversity., 14: 143.
- Ween O., Stangeland J.K., Fylling T.S., Aas G.H. (2017). Nutritional and functional properties of fishmeal produced from fresh byproducts of cod (Gadus morhua L.) and saithe (Pollachius virens). Heliyon, 3: e00343.
- Weichun P., Salami T.M., Jianga X. (2019). Liquid chromatographic analysis of free amino acids in American cockroach (Periplaneta americana). SDRP J. Food Sci. Technol., 7: 2472–6419.
- WHO (2007). Protein and amino acid requirements in human nutrition: report of a joint FAO/WHO/UNU expert consultation. World Health Organization technical report series, (935): 1–265.
- Zielińska E., Baraniak B., Karaś M., Rybczyńska K., Jakubczyk A. (2015). Selected species of edible insects as a source of nutrient composition. Food Res. Int., 77: 460–466.
- Zielińska E., Karaś M., Jakubczyk A. (2017). Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int. J. Food Sci. Technol., 52: 306–312.